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Abstract

In this paper, we propose a novel way to perform top-
down semantic feedback in convolutional deep networks for
efficient and accurate image parsing. We also show how
to add global appearance/semantic features, which have
shown to improve image parsing performance in state-of-
the-art methods, and was not present in previous convolu-
tional approaches. The proposed method is characterised
by an efficient training and a sufficiently fast testing. We use
the well known SIFTflow dataset to numerically show the
advantages provided by our contributions, and to compare
with state-of-the-art image parsing convolutional based ap-
proaches.

1. Introduction
Deep convolutional architectures have been shown to

perform as well or better than methods based on handcrafted
features in a large set of computer vision problems. Prob-
ably, the most interesting property of convolutional deep
networks is that they can learn a set of increasingly com-
plex features from raw pixels. In the case of end-to-end
supervised learning, the deep convolutional architecture is
at the same time “feature extractor” and classifier. Unsu-
pervised techniques have shown to be able to learn relevant
representations of data. Also, they are usually more effi-
cient than supervised ones and less prone to fall into local
minima [1, 7].

Recently, in the field of image parsing, convolutional
deep networks have reached state-of-the-art performance on
several datasets [10, 8, 23] without the need of handcrafted
features, and being faster than previous methods at test time.
These methods show that convolutional deep networks can
learn local appearance features that are effective for image

parsing. The work in [23] demonstrates the relevance of
semantic feedback in solving image parsing problems. Au-
thors implement top-down semantic feedback by means of
recurrent convolutional networks.

In this paper, we propose an alternative strategy to per-
form top-down semantic feedback that is easier and faster
to train than previous convolutional approaches. Instead of
using a recurrent network, we learn a large set of features in
an unsupervised way and propagate the categories posterior
probability to the next deep convolutional network. In this
case, subsequent deep architectures do not share the pa-
rameters, thus decoupling feature learning and top-down se-
mantic feedback, thereby simplifying the training process.
Within this approach, we also add global appearance and
semantic features, which have been shown to improve the
performance of image parsing methods [28], and that are
not present in current convolutional approaches.

The paper is organised as follows. Section 2 presents re-
lated works; section 3 provides the paper’s motivation and
contributions; section 4 outlines the contributions by build-
ing on a convolutional deep network; section 5 shows ex-
perimental results supporting our claims both quantitatively
and qualitatively; section 6 discusses relevant issues regard-
ing the proposed method in comparison with previous state-
of-the-art approaches; section 7 concludes the paper.

2. Related work

For the sake of clearness, from now on, we divide the
features into local and global, where global means that the
feature provides information on the whole image, and local
refers to a given receptive field (even a very large one). We
also divide features into appearance and semantic, where
semantic refers to features based on posterior probabilities
or labelling related to the (supervised) categories.
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Table 1. Characteristics of our method compared to state-of-the-art convolutional-based image parsing approaches. Training and testing
times are excerpted from respective papers for the configurations that gave the best results as reported in Table 2. Training time for the
method in [23] has been provided by the author in a personal communication. To provide a testing time independent on the image size
used by different methods, we provide the testing speed in kilo pixels per second.

Method Local features Global features Top-down feedback Training Time Testing SpeedAppearance Semantic Apperance Semantic
Multi-scale [8] Learned No No No No 2∼5 days 1.3 kpixels/s
Recurrent [23] Learned Learned No No Yes > 1 week 8.9 kpixels/s

Our method Learned Learned Learned Learned Yes 3h50’ 3.7 kpixels/s

2.1. Image Parsing

Image parsing (also known as scene parsing, scene label-
ing, or semantic segmentation) has been tackled by several
methods. These methods can be categorized into four main
groups.

The first large group of methods is based on handcrafted
appearance features coupled with a conditional random
field (CRF) approach (of increasing complexity), which im-
poses spatial and semantic consistency in the final clas-
sification [15, 14, 16, 11, 31, 2]. The interaction in the
CRF approach is partially designed and partially learned.
Some recent proposals aim at fully learnable contextual in-
teraction [21, 26, 3]. Since CRFs have an expensive learn-
ing/inference, the great majority of these methods require
an initial over-segmentation in super pixels to reduce their
computational complexity. Although this group of meth-
ods has shown to perform well on several datasets, the
handcrafted features and the computational complexity of
the CRFs can hinder their successful applicability to other
datasets.

The second group of methods substitute the CRF ap-
proach by a multi-scale Stacked Sequential Learning (SSL)
strategy [12, 30, 19, 9]. This allows an easier training pro-
cedure, since semantic features are fed to the classifier to-
gether with appearance features, in order to learn complex
appearance/semantic interactions. These methods do not
usually require super-pixel segmentation. While surpassing
the previous group of methods on some datasets [9], they
still have the problem that appearance and semantic features
are hand-crafted.

Both CRF and SSL methods provide strategies to ac-
count for global semantic coherence, by means of hand-
crafted features. Some of them also account for global ap-
pearance features.

The third group includes non-parametric methods, which
have also shown to perform very well in image parsing
problems [18, 6, 28, 29]. Non-parametric methods are
based on a k-nearest neighbor (k-NN) classifier on super-
pixels and introduce the idea that extensive training of pow-
erful classifiers (and graphical models) is not necessary if a
careful selection of the training images can be done at test

time. This selection allows to discard training images that
are not relevant for a given test image. In [28], authors add
the statistics of classes to improve the image selection, pro-
viding a form of global semantic information. Experiments
conducted in [28] show that global appearance and semantic
features have a significant impact on the final result. How-
ever, as the previous two groups, non-parametric methods
also require handcrafted local and global features.

Finally, methods based on supervised convolutional deep
learning architectures are proposed in [10, 8, 23]. In [8], au-
thors present a multi-scale convolutional deep architecture,
which requires little pre-processing and performs well on
several datasets. Nonetheless, this method requires post-
processing based on CRF or the use of an optimal pu-
rity cover criterion to achieve state-of-the-art performance.
In [23], authors present a recurrent version of convolu-
tional networks, which obtains good results without any
pre-processing nor post-processing and, to the best of our
knowledge, is the first introducing a form of semantic feed-
back in convolutional deep networks.

2.2. Unsupervised dictionary learning

Unsupervised learning strategies have revealed to be
helpful in tasks such as image classification [24, 4] and
greedy layerwise pre-training of deep architectures [1].

Methods such as [17, 24, 22, 13, 5, 20] have been suc-
cessfully used in the literature to extract sparse feature rep-
resentations. However, the great majority require a certain
number of meta-parameters to be tuned to achieve good per-
formance and/or are computationally expensive. To over-
come such limitations, we recently introduced a method
[25] to pre-train deep architectures in a greedy layerwise
fashion. The algorithm focuses on the sparsity properties of
the output distribution. Given the output of a layer, the algo-
rithm generates a sparse target with one “hot code” selected
ensuring the same activation frequency among all outputs
and optimizes for that specific target to learn the dictionary.
The norm of the dictionary bases is limited to 1 in order to
avoid degenerate solutions. The method is fast and meta-
parameter free, highly simplifying the pre-training of deep
architectures, and allows to learn a large set of complemen-
tary features thanks to the “over-regularization” imposed by



(a) (b) (c)
Figure 1. (a) The basic deep architecture coupled with a softmax classifier. (b) A detailed view of the computation within convolutional
layers of the basic deep architecture. (3) The addition of a top fully connected layer, which provides a compact global appearance descriptor.

both the target construction and the limitation of the bases
norm to 1.

3. Motivation and contributions
Current approaches in image parsing show pretty hetero-

geneous characteristics and, up to now, seem to fail in pro-
viding an architecture, which encompasses all the relevant
(and desirable) characteristics for image parsing.

CRF, SSL and non-parametric methods have achieved a
high level of sophistication in the design of both appear-
ance and semantic features, and provide elegant and effec-
tive strategies to exploit the contextual information. How-
ever, their biggest limitation is that they require handcrafted
appearance and semantic features. In some cases, the com-
putational cost is also a relevant issue, making the unsuper-
vised super-pixel segmentation a mandatory pre-processing
step.

Methods based on convolutional deep networks are rel-
atively new in the area of image parsing [8, 23]. The main
limitations of these methods can be summarized as follows:
(1) the learning is based on back-propagation (or, back-
propagation through time), which is a slow learning tech-
nique and, in the case of [23] is the main reason to limit
the number of recursions; (2) they do not present a form
of global appearance or semantic features, which have been
shown to improve the image parsing performance in [28].

With the aim to overcome the main limitations of deep
architectures, while keeping their desirable features, the
main contributions of the proposed work are:

1. To include global appearance and semantic features in
a simple and intuitive way, while not increasing sub-
stantially the train and test computational burden.

2. To propose a deep convolutional architecture, which

performs top-down semantic feedback and can be
trained in an efficient way.

Table 1 summarizes the main properties of state-of-the-art
convolutional deep networks compared to our proposal.

4. Method
We firstly explain how the basic architecture is defined

and then we show the modifications we applied to it in the
following subsections.

Figure 1(a) shows a schema of the basic architecture. Its
main characteristics are the following: (1) convolutional fil-
ters are learned following the standard greedy pre-training
strategy [1]; (2) unsupervised features are extracted from
all the n layers of the deep architecture, providing features
of different levels of complexity, from color and texture to
higher level representations. Using the output of all lay-
ers of a deep hierarchy is not novel in deep convolutional
networks (e.g. it has been used for pedestrian detection
in [27]); however, to the best of our knowledge, it is the
first time this strategy is used for image parsing.

The input image I is fed to the first layer L1 and propa-
gated until the topmost oneLn. Features at each layer Fl are
extracted and upscaled, if necessary, to match the size of the
input image. All features are concatenated into one vector;
optionally a feature vector providing information on prior
spatial classes distribution (S) can be added. The complete
feature vector is then fed to a softmax classifier, which pro-
vides the posterior probability P of every class for all image
pixels. During the training phase, the softmax classifier re-
ceives the ground truth GT information as input as well.

Figure 1(b) provides more details of the computation
within a layer. The input data at layer l, Il is firstly pre-
processed, obtaining I ′l . The pre-processing is formed by
local contrast and intensity normalization only for photo-
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(a) (b)
Figure 2. (a) A possible schema providing loopy top-down semantic feedback. (b) The unrolled architecture for a two iterations case.

metric RGB input. Subsequently, we normalize data such
that the average of each input over the training set is zero
and is scaled to have unitary standard deviation, in order to
accelerate the stochastic gradient descend optimization con-
vergence during dictionary learning. A set of Nc,l convolu-
tional filters Cl are applied linearly to I ′l , Fl = I ′l � Cl,
where � denotes the application of a set of multidimen-
sional convolutional filters. The features Fl take two differ-
ent paths: (1) they are propagated as output Ol to the next
layer by a max pooling operation, obtaining F ↓max

l ; (2) Fl

is upscaled, if necessary, to match the size of the input im-
age I , obtaining F ↑Bl ; where B denotes that the resizing is
performed by bicubic interpolation.

4.1. Top fully connected layer: a global appearance
descriptor

Here we present our first contribution. Without loss of
generality, let us assume that the top-most convolutional
layer of the architecture in Figure 1(a) has 2×2 pixels spa-
tial support; thus, the top-most output is a 2×2×Nc,n vec-
tor. This vector summarizes the content of the whole input
image; it is however pretty high-dimensional, especially if
Nc,n is large, and possible correlations between the 4 spatial
regions are not explicitly encoded.

Here we propose to add a top fully connected unsuper-
vised layer that maps the 2×2×Nc,n elements into a smaller
feature vector (see Figure 1(c)) that captures correlations
between all the features within quadrants. The resulting fea-
ture is a global representation of the whole image. To feed
this information to the softmax classifier, the vector must
be replicated for all image pixels. The behaviour and the
contribution of this additional layer to the deep architec-
ture performance is quantitatively and qualitatively shown
in section 5.2.

4.2. Unrolling loopy top-down semantic feedback

Our second contribution is detailed in this subsection.
Figure 2(a) shows a possible way to introduce top-down
semantic feedback in the proposed architecture. Since we
use the output of all layers as features, the unfolding ap-
proach proposed in [23] cannot be employed in a straight-
forward way. Instead, we can replicate the architecture as
many times as we want and feed all the deep networks (ex-
cept the first one) with the posterior probability generated
by the previous softmax classifier. Figure 2(b) shows our
approach for the two iterations case. The parameters of dif-
ferent deep architectures and classifiers cannot be shared
since the deep architectures are trained in an unsupervised
way and their input data depends on the output of previ-
ous classifier. While this seems a disadvantage with respect
to [23], it in fact allows to train the whole system without
the need of an expensive training algorithm as the backprop-
agation through time (BPTT) used in [23]. The BPTT algo-
rithm is the main limitation that does not allow to train the
method in [23] with more than 3 compositions of the basic
net. Another advantage of our method is that subsequent
deep architectures can learn different features depending on
the input data, thus being able to blend information from
RGB data and posterior probability in an implicit way.

5. Experimental results

The experimental section is divided in three parts. The
first one presents the dataset and the method setting. The
second shows the advantage of using a fully connected un-
supervised layer on top of the convolutional layers. The
third part shows the advantage of the unrolled top-down
feedback providing a quantitative and qualitative analysis
of results.



5.1. Experiment setting

We tested our method on the “SIFT Flow dataset” [18],
which is composed of 2688 images and presents 33 differ-
ent categories. We use the standard training/test split as pro-
posed in [18]. Differently than [8], we do not apply any kind
of distortion on the images. As done in [23], we re-scale
the input image by 1/2 to speed-up both training and testing
phases. Nonetheless, for a fair comparison to other meth-
ods, the evaluation is performed by upscaling by a factor 2
the posterior probability P before comparing the maximum
a posteriori labelling with the ground truth.

The spatial prior S is computed by accumulating the oc-
currences of each class in 33 separate maps (at full resolu-
tion) for all the training images; then the resulting maps are
normalised and blurred with a Gaussian filter with σ = 32
pixels.

The basic architecture is composed of 6 convolutional
layers with receptive field of 3×3 pixels and a spatial max
pooling of non-overlapping 2×2 pixel regions. The size
of the pooling region has been set to its minimal possible
value so that the convolutional architecture could be as deep
as possible. The receptive field is set to the minimal sym-
metric size, so to minimise the computational cost of con-
volutions and to delegate the learning of complex spatial
configuration as much as possible to higher layers. Each
convolutional layer has Nc,l = 100 output features. When
employed, the top fully connected layer has 33 outputs. We
set the number of outputs to these values for two practical
reasons: (1) having 33 outputs for the fully connected lay-
ers allows a fair comparison with the spatial prior contribu-
tion in section 5.2; (2) when using the unrolled architecture
the total number of features is 3 (RGB input) + 6×100 (6
conv layers) + 33 (spatial prior, S) + 33 (fully connected
top layer) + 33 (posterior of previous iteration, P ) = 702.
This has been specifically done to have less features that
the method in [8] (768 features).

Finally, for the unsupervised learning, we used 50k ran-
dom samples per layer. The method in [25] does not require
any meta-parameter. For the supervised training part of the
method, we use 1% of ground truth data per iteration, corre-
sponding to about 368k samples. The regularisation term in
the softmax classifier is set to λ = 10−3 in all experiments.
Softmax parameters are learned using the LM-BFGS opti-
mizer for a maximum of 500 iterations.

5.2. Unsupervised global image descriptor

In this sub-section, we provide experimental evidence
that the top fully connected layer contributes in a substantial
way to the performance of a deep unsupervised architecture
for image parsing. Since the softmax is fed with the output
of convolutional layers, the spatial prior S and the output of
the fully connected layer, we separate these three compo-
nents to analyse the system’s performance.

Figure 3 shows the results in terms of global accuracy
(left) and average per-class class accuracy (right) for four
configurations. The first one is the basic 6 layer convolu-
tional architecture (6L) using a total of 603 (3 + 100×6)
features. The second configuration adds the spatial prior as
an additional feature (6LS, 603 + 33 features). The third
setting adds the top fully connected layer to the basic con-
figuration (6LFC, 603 + 33 features). The last configura-
tion adds both the top fully connected layer and the spatial
prior (6LSFC, 603 + 33 + 33 features). As can be noticed,
the spatial prior and the top fully connected layer allow to
increase both performance measures in a significant way.
However, the contribution of the top fully connected layer
is clearly more important than the spatial prior. The increase
in accuracy adding the top fully connected layer (+2%) is a
clear sign of the advantage of using the proposed global im-
age descriptor strategy. While the contribution of a spatial
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Figure 3. Quantitative comparison of 4 configurations with and
without the top fully connected layer. Global accuracy (left) and
per-class average accuracy (right). See text for details.

prior on the classes is easy to understand, the effect of the
top fully connected layer is not trivial to grasp. The fully
connected top layer summarizes the image information into
one single (sparse) feature vector. Differently than [28], we
do not perform a ranking nor we select a subset of images as
a representative set of the “query” image. However, to show
that we can obtain a similar effect, we use the output of the
top fully connected layer as a global image descriptor and,
given an input image, we perform a ranking based on the
angle between the top layer output of the input image and
all the outputs of the training set. The angle is a proper mea-
sure of (dis-)similarity since the softmax classifier is based
on linear hyperplanes before the exponentiation. This pro-
cedure has been performed solely to show the representative
power of the top fully connected layer.

Figure 4 shows some examples of the result of this proce-
dure. The image on the left is the input image from the test
set, and the four images in the same row are the retrieved
and ranked images from the training set. Since the output
of the top layer is replicated for all the image pixels, it is
clear how this information acts as a global contextual prim-
ing for the classification. When used in conjunction with
the top-down semantic feedback, this descriptor is able to
blend appearance and semantic global features of the image



in a very compact way.

Input 1st 2nd 3rd 4th
Figure 4. Six examples of ranking effect using the output of the
top fully connected layer. See text for a detailed explanation.

5.3. Effect of top-down semantic feedback

The top-down semantic feedback allows the system to
build subsequent parsing hypothesis and refine them pro-
gressively. Since the deep architecture learns features from
the input image and the previous posterior probability, the
system is able to learn appearance-semantic configurations
from the second iteration. Figure 5 shows this effect in
terms of pixel accuracy (left) and per-class average accuracy
(right) as a function of iterations. The red dashed line repre-
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Figure 5. Global accuracy (left) and per-class average accuracy
(right) as a function of the iterations when using the unrolled top-
down semantic feedback architecture.

sents the performance of a single iteration when using 10%
of the training data (twice the quantity used in the 5 itera-
tions). This clearly shows that the top-down feedback is the
relevant component to obtain state-of-the-art-performance.

The per-class accuracy is also shown in Figure 6 sep-
arately for each class, ordered by decreasing accuracy. It
can be seen that the top-down semantic feedback improves
the per-class accuracy for almost all classes. The incre-
ment is particularly relevant when considering rare classes,
showing that the semantic feedback contributes in learning
a meaningful context. However, it can be noticed that some
improvement is also present for the most frequent classes,
showing that the algorithm is refining the parsing by bet-
ter delineating boundaries and/or removing noisy classifica-
tions. Figure 7 shows some visual results, where the above
mentioned effects can be observed. The result in the first
row is especially interesting: the first iteration presents a
lot of heterogeneous classes, as road, mountain, car, sea,
grass and field; this can be explained by the poor global ap-
pearance image prior information (see last row of Figure 4).
However, in subsequent iterations, both local and global in-
formation allow to reject inconsistent classes rapidly (first 3
iterations), while refining the boundaries of classification.

6. Discussion

Table 2 shows a comparison with the best perform-
ing convolutional methods on the SIFTflow dataset.

Table 2. Comparison with convolutional-based state-of-the-art
methods in term of Global and average Per-class accuracy. The
improvement from 1st to 5th iteration is provided in the last row.

G
lo

ba
l

Pe
r-

cl
as

s

Farabet et al. [8] 78.5% 29.6%
Pinheiro et al. [23] 77.7% 29.8 %

1st iteration 74.7% 26.3%
5th iteration 78.7% 32.1%
∆ (5th - 1st) +4.0% +5.8%

Our method clearly outperforms previous convolutional ap-
proaches and gets really close to the best reported result
on the SIFTflow dataset by the non-parametric method in
[28], which obtains 79.2% and 33.8% for global and av-
erage per-class accuracy respectively. The contribution of
the top-down semantic feedback is evident, allowing an im-
provement of 4% in accuracy and 5.8% in per-class average
accuracy over 5 iterations.

An important characteristic of our method is that the
training procedure is one order of magnitude faster than pre-
vious methods (see Table 1). We trained the 5 iterations sys-
tem in less than 4 hours on a quad-core i7@2.3Ghz, using
mildly-optimised Matlab code. Testing speed is comparable
to previous convolutional methods and allows to compute a
128×128 pixels image in 4.4 seconds; which compares very
well with the 20 seconds per image required by the method
in [28]. We believe that implementing our method on GPUs
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Figure 6. Per-class accuracy, in descending order for the 1st and 5th iteration.

Input 1st 2nd 3rd 4th 5th Ground truth

unlabeled awning balcony bird boat bridge building bus

car crosswalk door fence field grass mountain person

plant pole river road rock sand sea sidewalk

sign sky staircase streetlight sun tree window

Figure 7. Results of image parsing for 4 test images (top). Color coded legend (bottom).

can achieve realtime performance.
All the experiments have been designed to focus on our

method novelties and to compare in a fair way with previous
convolutional deep networks. Nonetheless, the performance
of our method can be improved in several ways: (1) the
multi-scale approach proposed in [8] could be used in our
approach by learning multiple deep architectures and feed-
ing the result from different scales into the softmax classi-
fier; (2) the softmax classifier regularisation term λ could be
tuned to achieve the best possible accuracy; (3) the number

of outputs at different layers could also be investigated to
optimise the set of learned features for the given problem;
(4) adding transformations on the training set, such as hor-
izontal flipping, rotations, etc, could also help improve the
system performance, as shown in [8].

The scalability of our proposal with respect to the num-
ber of classes seems to be a problem, since the posterior
probability map is used as input in the next iteration, poten-
tially making the input data very high dimensional. How-
ever, as a natural possible solution, a classical dimension-



ality reduction method, such as an auto-encoder, could be
employed.

7. Conclusion
In this paper we proposed a novel strategy for efficient

training of a system that performs top-down semantic feed-
back. Within this architecture, global appearance/semantic
features can be added easily. We have shown that both con-
tributions help in improving the state-of-the-art achieved by
deep convolutional networks in the field of image parsing.
Further investigation will be devoted to the issues raised in
the discussion and to test the proposed method on a wider
spectrum of datasets.
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