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Color Constancy by Category Correlation

Javier Vazquez-Corral, Maria Vanrell, Ramon Baldrich,rféesc Tous

Abstract—Finding color representations which are stable to =~ Computational color constancy is an under-constrained
illuminant changes is still an open problem in computer vison.  problem and therefore it does not have a unique solution. Due
Until now most approaches have been based on physical con-y, this jj|-posed nature, a large number of methods have been
straints or statistical assumptions derived from the scenewhile . .
very little attention has been paid to the effects that seleed proposed over a period span_mng more _than_20 years_ [4]’_ and
illuminants have on the final color image representation. yet a widely accepted solution to the illuminant estimation

The novelty of this work is to propose perceptual constraing problem [5] is still elusive. Existing solutions can be died
that are computed on the corrected images. We define theategory  into two main families statistical and physical.
hypothesis, which weights the set of feasible illuminants according Satistical methods can also be split in three types. The first

to their ability to map the corrected image onto specific colcs. t based osimole i Satisi th t
Here we choose these colors as the universal color categarie ype, based osmple Image slalisucs, are the most common

related to basic linguistic terms which have been psychoplsjcally ~ color constancy methods. In this group we h&ey-World
measured. These color categories encode natural color sistics, [6], White-Patch [7], Shades of Grey [8], Grey-Edge [9], and

and their relevance across different cultures is indicatedby the  Bag-of-Pixels [10]. A second type ar€amut Mapping meth-
fact that they have received a common color name. ods. These methods are based on the seminal work of Forsyth

From this category hypothesis we propose a fast implemen- . .
tation that allows the sampling of a large set of illuminants (11, where he introduced the C-Rule algorithm. Improvetsen

Experiments prove that our method rivals current state-ofart 0n C-Rule have been reported in [12] and [5]. However,
performance without the need for training algorithmic param- these methods have a significant drawback for computemvisio

eters. Additionally, the method can be used as a framework to gpplications: they need calibrated conditions, that irtow
insert top-down information from other sources, thus openng e camera sensitivities. The last type of statistical ésrare
further research directions in solving for color constancy e . L .
Probabilistic or Bayesian methods, where prior information
Index Terms—Color constancy, color naming, color categories, s ysed to correct the illuminant. Color-by-Correlatior8[1
category correlation Bayesian Color Constancy [14], [15] and Voting methodshsuc
as [16], belong to this group.
| INTRODUCTION Physical methods use a more general model of image forma-
Color is derived from three components: the reflectance §n than that used in statistical approaches. While sitzais
the object, the sensitivity of cones, and the illuminantct@e  methods assume surfaces are Lambertian, physical methods
Of these components, the illuminant spectrum is the leagsume Shafer's dichromatic model [17]. Some examples of
stable. lllumination changes depending on different aspecmethods using this approach are found in [18], [19], [20}][2
time of the day (daybreak, midday, sunset), or indoor/ooitdo  A|| the above mentioned works try to solve the ill-posed
situations, for example. Thus the problem for computeiovisi nature of the constancy problem either by constrainingitte s
is that the color of an object depends on the light under whigh the feasible set of solutions (reducing either the nunaer
we are looking at it. The human visual system solves thifyminants or number of the reflectances that can be found in
problem thanks to the so-called color constancy propetty [kcenes) or by making physical or statistical assumptionstab
This property allows humans to identify the color of an objeghe scene and the image content.
independently of the color of the light source. None of the previous computational approaches have in-
Color constancy is important for human vision, since colgfgduced perceptual constraints. Consequently, vere lit-
is a visual cue that helps in solving different visions taskgntion has been paid to how the selected illuminant affects
such as tracking, object recognition or categorizatiorer€h the perception of the content of the corrected image. Exielen
fore, several computational methods have tried to simulai@rived from experimental psychology on natural imagesgiv
human color constancy abilities to stabilize machine CO'%[Jpport to the conclusion that several different percdptua
representations. Two different kinds of approach have begfchanisms contribute to achieve constant images [1]. Dif-
used: normalization and constancy. Whilst color normétire. ferent mechanisms based on different visual cues such as the
creates a new representation of the image by cancelliggal and global contrast [22], [23], highlights [24], matu
illuminant effects [2], [3]; color constancy directly esates eflections [25], categorical or naming stability [26] analar
the color of the illuminant in order to map the image coIorﬁ1emory of known objects [27], [28] are responsible for the
to a canonical version. In this paper we focus on this secoggnost perfect behaviour of the human constancy system. In
kind of approach. this paper we focus on the definition of a color constancy
Authors are with the Computer Vision Center, Department om@uter method that considers the perceptual effects of catedumiza
Sciences, Universitat Autdnoma de Barcelona,08193,aBela, Barcelona , on the corrected image.

Spain, e-mail: javier.vazquez@cvc.uab.cat. _ In this work we concentrate on the naming stability cue.
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TIN2010-21771-C02-1 and Consolider-Ingenio 2010 cSpammms of W& propose theaming hypothesis as a criterion to constrain
Spanish MEC (Ministery of Science). the feasible illuminants. We propose to use the capability o
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categorizing, or assigning basic color names, in the ctedec[33]. These datasets givel categories where colors have
image as the basis to weight all feasible illuminants. Irs thbeen labelled with a unique name. They are obtained from the
sense, preferred illuminants will produce a color categgati averaged judgements given by all subjects in the experiment

image with useful properties for further recognition tasks Basic color categories are derived from anthropologicdl an

Moreover, our process can be justified as it produces psychophysical experiments that bring us to the conclusion
image labelled with the color categories that encode nhtutaat relevant colors are those that receive a common color
color statistics which have evolved as relevant acrossrifft name across different cultures. A similar conclusion about
cultures by receiving a common color name. The existenigs relevance of these specific color categories has also bee
of the basic color category terms was noted for the first timfarived from a biological model of the human color sensors
by Berlin and Kay [29], who recordetll basic terms. These [34]. This work provides strong evidence that color coding

basic terms were lately measured by Boynton and Olson [38] human vision favours these color categories. There are
in psychophysical experiments. evidences that basic color terms are likely to be encoding

Using the category hypothesis, we propose a computatioR@damental natural color statistics [35]. That makes séns

approach that is a probabilistic method similar to illuniba an evolutionary theory as they would capture the most reteva
voting [16] or color by correlation [13], but with two ess&it information to survive.

novelties that we list below. In this work we make use of a mapping of these categories
Firstly, the method gives a compact framework that allowsyi clELab space provided by Benavesteal- [33]. The
prior-knowledge from learnt-color categories to be easily first row in figure 1 shows the chromaticity of the convex-hull
troduced. llluminant selection is done through tagegory hy-  of these mapped colors at three different levels of intgrisit
pothesis, which is defined as the preference of illuminants thgke CIELab space. These polyedron contain the parts of the
assign color categories in the corrected images. In p#aticu co|or space that are judged as pure colors (or focal colors);
we want to stress that this new algorithm can also be seen §gaihose colors named with a unique basic term. We will use
generalisation of simpler methods, such\ahjtePatch where  hese sets of colors as the anchor categories that willdeter
we only consider the white category. This opens up a new W corrected images. These sets are the focal poisof
of generalizing simple methods to allow greater complexighe corresponding color. We use the CIELab space for figure
(i.e. not only by increasing their sta_ustlcal complexny) 1 for explanatory purposes but in the rest of the paper we
Secondly, we present a fast algorithm that builds a weightggker 1o RGB space that is the space used in all the reported
feasible set for a fine sampling of the feasible illuminantgyperiments on the standard datasets. To build the category
This fast algorithm can also be seen as a fast implementatighirix in RGB we use the reflectances corresponding to the

of the Color by Correlation approach [13] for the 3D casgamed colors, the canonical light (white illuminant) ane th
[31] in the particular case of a diagonal model of illuminankGp color matching functions.

change. This fast algorithm requires the representatiahef

. . ) : o . In order to also encode common changes of these colors
weighted feasible set in logarithm space. This in turn immpso

_ . . X . : in real scenes, such as those in shadowed areas or textured
the .||Ium|na.nt selectpn step, since multiple SO'.Ut'OnH e surfaces, or even colors reproduced in man-made objects, we
easily considered using a compact representation. are going to experiment with some extensions of these basic

To evaluate the perfprmance _of_the proposed appr(_)ach, (V,\éefegories, whilst not extending them beyond the convéi-hu
compare our res_ults W'th th_e existing state-of-the-aremmis ¢ 0 pagic terms. Therefore, we define our categories depen
of how well the illuminant is estimated. The results suggemg on the distance to the focal points, whilst constrairifrem

that our approach a_ch|eves the performance of the 0”?8 remain inside the Convex Hull of the focal terms. Thus, a
methods, whilst also incorporating the advantages memoncategoryc.ﬁ is defined as

above.
The paper has been organised as follows. In section Il we

explain the basic color term categories. Afterwards, irtisac CP ={p:d(p F)) < B,pec CH(F)} 1)

[l we introduce the category hypothesis, and we report the !

results compared to other current methods in sections IV and ] o )
V. We conclude in section VI. wherep is a point in RGB spacel’ = {F;};—1.11 is the set
of focal colors presented in [33{;H represents the convex

hull of a set of points and refers to the euclidean distance.

Then, from these equations, we are able to define a family
Basic color term categories were first defined by Berliof category sets by changing ti¥evalue. In Figure 1 we show
and Kay [29], and they were deduced from a large anthreeme examples for these sets, where the first row reprebents t
pological study based on speakers of 20 different languagefginal basic categories3(= 0) as horizontal cross-sections
and specific documentation from a further 78 languages. TheayLab space I, = 25, L = 45, and L = 65), and the second

concluded that the universal basic color terms defined int masd third rows represent two different sets= 10 andg = 20
evolved languages anmshite, black, red, green, yellow, blue, respectively. The grey background in all the different plot
brown, purple, orange, pink and gray. In subsequent works, represents the global convex hull, which is the growingtlimi
psychophysical experiments have generated data that alldwdiscretize category membership we will use a charatieris
these basic categories to be specified accurately [30], [3Rinction defined as:

Il. BASIC TERM CATEGORIES
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and the functionf(e) is defined in a voting procedure in the

i B B same manner as Sapiro in [16]. This voting function is defined
Xos(p) = { o se €CLPE G (2 as
i 0 otherwise
where 0% = {C},_1.11, i encodes each one of the eleven fle) = Z P(elp) (4)
basic terms, namelywhite, black, red, green, yellow, blue, pERGB;

brown, purple, orange, pink and gray} and p is a color

representation vector. Conditigh< ¢ is imposed to do not
count twice those colors falling in the intersection of tw
categories. The order of the categories is not important
our results since different categories are equally wedline

our approach.

where RG B; represents the different colors appearing in the

image, andP(e|p) is the probability of having illuminangé
iven colorp in the image. This probability is defined to follow
e category hypothesis introduced earlier, thus

B Zcfecﬂ Xes (p- diag(e) ™)
ZC?GCB quRGB(ch ()
antifies the ability of illuminant to categorize colop in

8 set of anchor categories denoted’#s and is normalized
y the total amount of nameable colo#s. s (), defined in

P(e|p) = P(elp,C”) (5)

Ill. CATEGORY METHODS

We base our approach on the idea that color consta
aims to produce corrected images where important conte
are stable. We refer to these important contents as basic ¢

tcf?t(tegones.f'l'lhfese ancholr pategonez COTSt'tC;J.te pfl'_?]r Ilauf@ua equation 2, is responsible for counting the number of colors
at 1s usetul for general Imageé understanding. Theretare \f\élling in each one of the categories for the specific illuaminh

fﬁ:sketgag%rfgtte'rgﬁgisa:g\’\;rgsofs n_?msr%pgzsi:r}gtr'sgm\iv:er% simplify the previous formulation, the denominator in
9 ) %quation 5 is substituted by a constant

the following hypothesis for color constancy:
Category Hypothesis: Feasible illuminants can be weighted
according to their ability to anchor the colors of an image to ky =1/ Z Z (X (@)
basic color categories.
Thus, we will call Category Methods those that, applyingind we therefore rewrit®(e|I) as
this hypothesis, compute a weighted feasible illuminant se
according to the set of anchor categories being used, aectsel
one of them that allows us to obtain a corrected image whose P(e[l) ~ k1 -ka > Xeo(p- diag(e)™").  (7)
colors falls into these categories. PERGBr ¢fecos
In Figure 2 we show some examples of the results provided

by th 4 hvoothesi ing the basi lor t We want to highlight here, that this compact formulation
y the proposed Nypothesis using the basic color terms Caéghld be used for a different set of categories than those use
gories. The original images are shown in the second colum

. i S 1 this paper. Indeed, existing color constancy methodsbean
while the first column presents the categorisation of the

) In the third col ive th ted i é;orporated within this framework. For instance, usingteh
'mages. in the third column we give Ine correcled images agg , unique category means that the method acts as a White-
their corrected categorisation is given in the fourth calum

Patch algorithm, while taking all possible color values #or

Hence, from the -f|rst aqd the fourth column We Can Se&rtain device as different categories behaves like thercol
how color categorization is changed, from the original te t

. . ) y-Correlation [13] solution in the diagonal case for a 3bco
corrected image, towards a more colorful image representat

that in turn makes it more stable (e.g. sky is blue, the roadsgace'

grey). Clearly, our proposal is simply a bottom-up approach

that pursues a corrected, or more stable, image that neBedd-ast implementation

further processing for full image understanding. The main problem of this formulation is its cpu time, which
We will now explain our method in three parts: first, was large due to the double summation term. Therefore, in

will define the general mathematical formulation; secondlgrder to reach a fast implementation of the proposed voting

we will explain the fast implementation of this mathemdtic@l_jproach, we reformulate equation (7) by reordering surds an
formulation; and finally, we will explain the illuminant ®8- obtaining

tion criteria.

(6)

cPecs aeRGB

Plell)mki ke > > Xes(p-diag(e)™)  (8)

CfeCﬁ pERG DB

A. Mathematical formulation
Let us defineP(e|I) as the probability of having illuminant

e in imagel. This is approximated as in this way, the inner summation is equivalent to a product of
two functionshistn and Xgi, wherehistn is the normalized
Pe|l) ~ fle) =k - f(e) A3) histogram of the imagé and X5 is the characteristic function

Yeers f(€) ofa categor)Cf. Both functions are defined over the complete

where F'S is the feasible set of illuminants (in the C-RuleRG B domain which allows the reformulation of the previous
sense, considering as canonical gamut the whole RGB cubglation as



4 JOURNAL OF BIEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

70 70 70
60 60 60
50 50 50
40 40 M 40
30 30 30
20 20 20

40 40 40

40 30 20 10 0 10 20 30 40 -40 30 20 10 0 10 20 30 40 40 30 20 10 0 10 20 30 40
@ L=2583=0 (b) L =45 8=0 () L=65783=0

70 70 70

60 60 60

50 50 50

30 -30 30

40 40 40

40 30 20 10 0 10 20 30 40 -40 30 20 10 0 10 20 30 40 40 30 20 10 0 10 20 30 40
(d)L =25 8=10 (e)L =45 8=10 (f) L =65 53=10

70 70 70

60 60 60

50 50 50

(@) L =25, 8 =20 (h) L = 45, 8 = 20 (i) L =65, 8 =20

Fig. 1. (a) Color name categories with luminance 25 in Lakcep@®) Color name categories with luminance 45 in Lab spap€¢tor name categories
with luminance 65 in Lab space, (d), (e) and (f) first extensid the categories. (g),(h) and (i) second extension

and }fst\n(x) = histn(exp(x)). Furthermore, considering that

. . B taking logarithms transforms products into additions, \ae c
Plell) ~ky-kp- »_ > histn(r-diag(e) ) Xos (1) \yrite
C?GCB reRGB
)

Note that from now on, the inner summation is over the set

of possible RGBs instead of over the values appearing in the /\ R Ple|l) =
image. Z Z histn(log(r) + diag(log(e)) ") - X5 (log(r))

At this point we propose to estimate this probability by-sccs rerGB ‘
removing constants; andk, and introducing dog monotonic (11)

function in the image domain. This implies that
which brings us to compute a linear correlation of two

P(e|l) ~ ky - ko - P(e|I) functions
x P(e|I)
= Z Z lszl(log(r -diag(e) ™)) .)E'Cp (log(r)) P(e|l) = Z (histn * )E'Cf)(e) (12)
cPecs rERGB ¢ Cheos
(10)

that can be computed in the Fourier space as a simple product
where the membership function and the histogram functi@m functions. Using théast Fourier Transform (FFT) this can
have been redefined in log spaceXss (r) = X;s(exp(r)) be done with a computational caSi(n®log(n)).
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Fig. 2. Categorized original image (left), original imagergter-left), corrected image (center-right), categatizorrected image(right)

C. Hluminant selection solutions with solutions provided by other methods which ar
based on a complementary hypothesis. In this way we can

In the foregoing sections we defined a computational fram@\?aluate whether the category hypothesis can be improved

work that provides a wgightgd set of feasil?l'e. solutions.. T'Eﬁ/ combining it with, for example, an edge-based hypothesis
proposed algorithm assigns different probabilities t&USi- g combination criterion can be seamlessly integratetiini

ble illuminants accordingly with the category hypothesise o ronosed algorithm, which is another advantage of this
next step is to select the most relevant illuminant by USiqgamework. The use of a global convolution in the log-RGB

some specific criterion. To evaluate the performance of tiface s the basis that allows the probabiliies for a large
hypothesis we set up experiments with two different crteri 5 1 h1e of jlluminants within the feasible set to be caledat

i) selecting the illuminant with the maximum probability,ang 5j10ws us to work directly with these probabilities.
which is the most common approach in probabilistic methods;

and ii) selecting the illuminant by combining our feasible Using a maximum criterion we can formulate Category
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This approach has been used in [36] where an illuminant is
selected to improve a scene recognition task from a variety
of solutions from different constancy methods (and after a
learning step). There are also other methods selectingqaeni
solution from a set of precomputed ones [37], [38]. Thesk las
methods use classifications techniques such as decisiest for
to this end.

Here in this work, we propose a criterion that estimates
the best illuminant by selecting the solution froff* =
{Si}i=1,... » that is the most voted-for by solutions derived
from other methods based on different hypotheses and which
are denoted ag7;};=1,... . Formally, we select the most
voted-for illuminant by computing

€= Sarg max; #{v;Eviv;=i} (15)

wherev = {v;};=1,...m €ncodes the solution o~ that is
closest to a solution if7}},=1.... ., and

Fig. 3. Different feasible solutions for the same scene iging different .
explanations of that scene Vj = arg miln ang(Si, Tj) (16)

where ang is the angular error distance between two given

illuminants.
Correlation methods (heretoforéaC) to deliver a unique  jith this criterion we select an illuminant which has a high
solution, which is given by probability based on our own hypothesis and is reinforced by

being close to the solutions provided by other hypotheses.
é=arg max P(e|I) (13)

. . . . IV. EXPERIMENTS
where ¢ is the estimated illuminant for the scene based on

equation (3). To evaluate our hypothesis we have run our method under

Using a combination criterion we are assuming that ourdifferent parameters, varying both the category sets aed th
weighted feasible set is providing different plausible laxp- Se€lection criteria. We have used three different dataseds a

tions of the corrected image. For instance, in some paaiculVe have compared our results with the current state-of-the-
images such as the bananas shown in Figure 3, we &h

see that disambiguating the scene illuminant from the objec We denote our method aSaCyl, where sc denotes the
reflectances is an unsolvable problem. In this case mostS§fection criterion used andrefers to the category threshold
the solutions in the feasible set could be equally plausitf¢fined earlier. The selection criterion will e for selection
since they could correspond to different ripeness of thie oy ased on maximum probability andor a combined selection.
different illuminants. The four images in Figure 3 have beerPr both selection criteria the value gftakes one out of four
obtained from a clustering with standard k-means with folgossible valuesd (in order to use the basic categories),
classes onto the feasible set and extracting the illumingtht 20 and400. This last value has been defined in order to select
maximum probability as the representative of each cluter. the complete convex hull (grey polygon in Figure 1). In all

this case, the original image was close to the green banaH¥ experiments our methods have worked witho@RG B
given in solution (). cube of 50 bins, which implies a sampling 86° different

Accordingly with the previous observation we can statduminants. _ o
that working with multiple solutions can be an improvement SPecifically for the combined criterion, we have selected
to classical constancy approaches. One of the strengthsCBf Solutions by settingr = 0.95 - max(P(e/I)). We have
our method relies on the fact that a large sample of Iikeg)”m'”':"d these solutions with 24 solutions coming from
iluminants has already been computed. In this way we cé¥fferent applications of the grey-edge hypothesis. Weehav
extract multiple solutions by directly thresholding onteet used a wide range of statistical combinations of this hypsith

weighted feasible set. Then, a multiple solution set fonemi PY fixing the following parameters = 1,6,11,16, o = 1,3
image! is given by andn = 0,1,2 where p is the Minkowski Norm,o the

smoothness parameter andhe differentiation order
S = {ee FS: P(e|I) > al, (14 Here we compare our method v_vi;h a range of previous
approaches. These methods are divided in two groups: cal-
which denotes the set of illuminants having a probabilityrated and uncalibrated. The first group includes C-Rule
higher thana. Providing multiple solutions allows us to(maximum volume (GM-MV) and average (GM-AVE)) [11]
delegate the final selection either to other visual procesith  and Gamut Constrained illuminant estimation (GCIE) [5]isTh
contextual information or to other top-down selective tasklast method is constrained with a set of illuminants. We have
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TABLE |
ANGULAR ERROR ON THE DIFFERENT DATASETS

Method Dataset 1 Dataset 2 Dataset 3
RMS | 95% RMS | 95% RMS [ 95%
Our approach
CaC?n 14.57° 26.69° 9.38° 16.96° 8.82° 16.06°
CaCB 14.63° 27.58° 9.42° 18.30° 8.19° 16.11°
CaC,%S 14.43° | 26.69° 9.89° 18.28° 8.29° 16.11°
CaCc10 14.55° 27.19° 9.60° 18.30° 7.66° 14.87°
CaC,%S 14.72° 27.84° 8.98° 16.96° 7.34° 15.20°
CaC?20 14.74° | 28.09° | 9.43° | 17.08° | 7.23° | 14.85°
CaC200 14.76° | 27.59° | 8.99° | 16.96° | 7.23° | 14.67°
CaC200 14.79° | 27.42° | 9.32° | 17.08° | 7.05° | 14.34°
Uncalibrated methods
Grey-Edge 14.62° 27.17° 9.48° 21.42° 8.56° 18.96°
Shades-of-Grey 14.77° 27.57° | 10.07° | 22.32° 8.73° 20.50°
Max-RGB 15.89° 30.30° 9.58° 26.37° 11.76° 26.54°
Grey-World 15.97° 30.60° 13.02° 27.61° 13.56° 29.41°
no-correction 20.32° 37.67° 9.75° 26.37° 19.64° | 34.95°
Color by Correlation - - - - 10.09° -
Neural Networks - - - 11.04°
Calibrated methods
GCIE 87 lights - - B - 7.11°
GCIE 11 lights - - - - 6.88°
GM-MV - - - - 6.89°
GM-AVE - - - - 6.86°

used two different constraints: the set of 11 illuminantsdus

in the image dataset and a set of 87 illuminants including tiataset 2. Barcelona Calibrated dataset This dataset
previous set. In the second group we include Grey-Edge [9as firstly defined in [42] witl83 images, and is composed
Shades of grey [8], Max-RGB [7], Grey-World [6], Color-by-of images captured within the Barcelona area. This dataset
Correlation [13] and Neural Networks [39]. is calibrated and was also acquired with a grey ball in the

We have run the Grey-Edge algorithm provided by the afield of view. Again, the ball has been excluded. From this
thor [9], and have considered the following set of paramtegataset, we have randomly selected two thirds of the images
0<n<20<0c<50<p< 15. For Shades-of-Gray aS & test set and the other one third as a training set for the
the values ard) < o < 5, 0 < p < 15. For the training Grey-Edge and Shades-of-Gray methods.
of these two methods, we us8d% of the images to set the
parameters, and we applied these parameters to the resP@f@set 3. Controlled Indoor scenes This dataset, created at

the images. In this way, independence between training antinon Fraser University [43], comprises 321 indoor images.
testing sets is preserved. It consists of 31 scenes captured under 11 different camdii

. . totalling 321 images. This dataset is formed by raw images,
The same experiments have been performed using th[ﬁe N . .
erefore no gamma correction is needed. In this experiment

different images datasets that we list below: . .

Dataset 1. Real-World Images This dataset, created by Ciurea. - trained both Grey-Edge and Shades-of-Gray by using 10
. ! . scenes for training and 21 to test.

and Funt [40], is composed of images captured with a grey

sphere in the image field of view. This sphere allows thl% order to analyse whether the category hypothesis

estimation of the scene illuminant. In our experiments th(? . . )
. . . elivers meaningful solutions, we have used the root mean
ball has been excluded in order to avoid any influence on

the results. This image dataset is gamma corrected therefgl-are (RMS) of the angular error between the solution and
we have rémoved this correction Using= 2.2 WhiCh’ is a he known scene illuminant. Low RMS error rates imply that

. . . . images are generally corrected towards the correct illantin
typical value used in RGB devices. Furthermore, since thi .

. : : e have also computed t19%% error to get an idea on how
dataset was recorded with a video-camera, all the image :

- A . ust the different methods are.

scenes within each of the 15 scenarios have a high cornelatio
of image content. To avoid the effects derived from this
fact we have followed a similar procedure from previously V. RESULTS AND DISCUSSION
reported experiments. In particular, we have used the fseame Results obtained from these experiments are summarized
extracted in [41], that constitute the biggest independeint Table |. Results are divided into three parts: our results
image dataset that can be extracted from the Ciurea-Fumicalibrated methods and calibrated methods in this ofdher.
dataset. The total amount of images 1$35, but with a first rows of the table are related to our method. In particula
different number of images for each scenario. Both fdrom the first two rows we can observe that our method
Grey-Edge and Shades-of-Gray we have used 5 scenariosdahnieves equivalent results to state-of-the-art methgdsing

training and 10 scenarios for testing. a completely new hypothesis and, furthermore, without the
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Fig. 4. Examples from a Real-World dataset. Original imdgé)( corrected image (center), categorized correcteagen(right).

. TABLE Il
need for a training step that can tune parameters to theedatas ancuLar ERROR PERFORMANCE BOUND BY SELECTING THE BEST

content. In these first two rows we applied the basic methodoLuTION DURING THE COMBINATION ON THE DIFFERENT DATASETS

CaC" that simply uses the focal colors of the 11 basic color Method | Dataset 1| Dataset 2] Dataset 3
categories. Here, the combination criterion does not ihice CGCSB 11.91° 6.86° 7.12°
critical changes to the performance. In subsequent rows we CaCp, | 11537 | 6.83° 6.27°
CaC 11.81° 6.21° 5.70°
study the effect on the performance of our method when cacfﬁ’o 11.99° 6.16° 5 540

changing the basic categories and in order to compare our
results.

In the second part of the table we report the performance of
different uncalibrated methods. From those methods, we hav Before analysing the results obtained when changing the
reported the results on the three datasets for those methsids of the basic color categories, it is worth noting an
where we could run the code; for the remaining methodimportant observation provided by experiments not regorte
(Neural Networks [39] and Color-by-Correlation [13]) wehere. We have found that increasing the size of categories
report the results provided in the literature that were jubeyond the convex-hull of the basic color categories resula
for dataset3. For the case of calibrated methods we reposignificant decrease in performance. This observation@tpp
the results for GM-MV and GM-AVE [11] computed by us,the idea that using the basic color terms as centered anchors
and we have transcribed from previous works the results fisradequate to achieve good adaptation to the most common
GCIE-11 and GCIE-87 [5]. A clear advantage is shown biynage content.
calibrated methods which use the information derived from As we can see from the results, for the case of a big real-
knowing camera sensitivities. world dataset (datasdf) the best results are obtained with
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Fig. 5. Controlled indoor dataset. Original image (lefrected image by proposed method (center-left), pointghtiag the selected illuminant (center-
right), categorisation of corrected images (right)

the smallest categorigSaC® and CaC'°. This result agrees Many different interpretations are plausible, therefdre tise
with the general hypothesis of the method, which contends different cues becomes more important. We can see how
that basic color categories encode natural color statistioce CaC2%° reaches almost the level of calibrated methods when
datasetl is mostly populated by natural images. the categories are adapted to the dataset content.

Dataset2 contains a mix of man-made objects and natural Apart from the results shown, we want to outline a further
images. The results for this dataset show thatC® outper- advantage derived from the method. The estimated illuntinan
forms state-of-the-art methods. However, better resudts cprovides us with an annotated image that gives information
also be achieved by increasing the size of categories. Thisout which parts of the images have been selected as anchors
result is most likely due to an increase in the percentage arfid with which color. In Figure 4 we show some results of
man-made objects. In general, man-made objects may takeC?, using basic color categories and maximum selection,
any color (i.e. they are less likely to be basic colors) angg mdor images in dataset. From left to right, the first column
occur as big homogeneous surfaces (non-textured). The sShews the original image, the second column corresponds
of the basic color categories usually agrees with theirutext to the corrected image and the third column displays the
appearance; for example a big green category correlatés waategorized image. In Figure 5 we show a similar example for
highly textured green areas in natural vegetation, whilloye dataset3 with the same basic method. In this case, the first
and red correspond with small category volumes correlatiagd second columns show the original and corrected images
with their less frequent appearance in natural environmentespectively, while the third column shows the points that
Big homogeneous areas induced by man-made objects imphve been annotated with basic names in the selected solutio
histograms with sharp peaks, in turn provoking an increasekinally, the fourth column presents the categorisationhef t
the number of solutions that can achieve a high weight, whiclhrrected images with basic terms.
clearly implies a likely increase in the error measure. Here we have also computed the performance bound we can

Finally, for the indoor dataset (datas®t the best results obtain by improving the illuminant selection step $t. We
are achieved when we use the biggest sizes of categori¢s, thant to emphasize again that all the images selected inghis s
is, the full convex hull of the color categories. This fachcawere highly categorized with basic colors due to our sedecti
be explained by the high amount of non-natural and noof the valuea. The results for these performance bound are
basic colors, such as turquoise or other intermediate €olehown in Table Il. These results reinforce our hypothesisesi
which are not basic and appear in big areas of the imag#ésey prove that a proper solution is included within the det o
Again, these images present histograms with sharp peaks Higher categorized images.
to the absence of natural textures. It is for this last reasonThe proposed method opens the possibility for further
that the combination criterion works very well in this datas research related to the introduction of top-down knowledge
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Top-o?\/\%ipl!remm general psychophysical data that can be modified depending
on the application. Lastly, and most importantly, our resate
Method T Dataset 11 Dataset 2| Dafaset 3 achieved without the need for a training step, as is required
CaC%, | 11.51° 6.75° 7.70° many other approaches.

The proposed method can be framed within the family of
statistical methods that estimates the illuminant by \gptin

The method can be seen as a generalization of previous

from the image content that can further constrain the numbaergproaches such adhitePatch, which results from using

of solutions and consequently allow even better perforrean% single achromatic category in our method, @olor-by-

By top-down knowledge we Tefer to further processes on t orrelation (for the3 D case) where categories are represented
image content that can provide clues to select which are

best color categories and even where they should be loca gthe full set of reflectances used.
gon ven w y u ?—’urther research is now possible to exploit the advantaiges o

in the image. For example, additional visual cues mform'r\?sing the weighted feasible set. Complementary visual,cues

about the existence of, say, a tree in the image will direet thr constraints derived from specific visual tasks, can gevi

method to find green color in that location of the image. T?Emher information to decide on the final illuminant.

evaluate the effects of this kind of top-down knowledge onto
the performance of our method, we have done one further

experiment, that is reported in table III. : .
In this experiment we have applied a pre-computation stepThe authors thank J. van de Weijer and D. Connabh for their

that has provided the basic color categories appearingein tRsightful comments.

image under the canonical illuminant. In this way, this sfiec
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