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Color Constancy by Category Correlation
Javier Vazquez-Corral, Maria Vanrell, Ramon Baldrich, Francesc Tous

Abstract—Finding color representations which are stable to
illuminant changes is still an open problem in computer vision.
Until now most approaches have been based on physical con-
straints or statistical assumptions derived from the scene, while
very little attention has been paid to the effects that selected
illuminants have on the final color image representation.

The novelty of this work is to propose perceptual constraints
that are computed on the corrected images. We define thecategory
hypothesis, which weights the set of feasible illuminants according
to their ability to map the corrected image onto specific colors.
Here we choose these colors as the universal color categories
related to basic linguistic terms which have been psychophysically
measured. These color categories encode natural color statistics,
and their relevance across different cultures is indicatedby the
fact that they have received a common color name.

From this category hypothesis we propose a fast implemen-
tation that allows the sampling of a large set of illuminants.
Experiments prove that our method rivals current state-of-art
performance without the need for training algorithmic param-
eters. Additionally, the method can be used as a framework to
insert top-down information from other sources, thus opening
further research directions in solving for color constancy.

Index Terms—Color constancy, color naming, color categories,
category correlation

I. I NTRODUCTION

Color is derived from three components: the reflectance of
the object, the sensitivity of cones, and the illuminant spectra.
Of these components, the illuminant spectrum is the least
stable. Illumination changes depending on different aspects:
time of the day (daybreak, midday, sunset), or indoor/outdoor
situations, for example. Thus the problem for computer vision
is that the color of an object depends on the light under which
we are looking at it. The human visual system solves this
problem thanks to the so-called color constancy property [1].
This property allows humans to identify the color of an object
independently of the color of the light source.

Color constancy is important for human vision, since color
is a visual cue that helps in solving different visions tasks
such as tracking, object recognition or categorization. There-
fore, several computational methods have tried to simulate
human color constancy abilities to stabilize machine color
representations. Two different kinds of approach have been
used: normalization and constancy. Whilst color normalization
creates a new representation of the image by cancelling
illuminant effects [2], [3]; color constancy directly estimates
the color of the illuminant in order to map the image colors
to a canonical version. In this paper we focus on this second
kind of approach.
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Computational color constancy is an under-constrained
problem and therefore it does not have a unique solution. Due
to this ill-posed nature, a large number of methods have been
proposed over a period spanning more than 20 years [4], and
yet a widely accepted solution to the illuminant estimation
problem [5] is still elusive. Existing solutions can be divided
into two main families,statistical andphysical.

Statistical methods can also be split in three types. The first
type, based onsimple image statistics, are the most common
color constancy methods. In this group we haveGrey-World
[6], White-Patch [7], Shades of Grey [8], Grey-Edge [9], and
Bag-of-Pixels [10]. A second type areGamut Mapping meth-
ods. These methods are based on the seminal work of Forsyth
[11], where he introduced the C-Rule algorithm. Improvements
on C-Rule have been reported in [12] and [5]. However,
these methods have a significant drawback for computer vision
applications: they need calibrated conditions, that is, toknow
the camera sensitivities. The last type of statistical methods are
Probabilistic or Bayesian methods, where prior information
is used to correct the illuminant. Color-by-Correlation [13],
Bayesian Color Constancy [14], [15] and Voting methods, such
as [16], belong to this group.

Physical methods use a more general model of image forma-
tion than that used in statistical approaches. While statistical
methods assume surfaces are Lambertian, physical methods
assume Shafer’s dichromatic model [17]. Some examples of
methods using this approach are found in [18], [19], [20], [21].

All the above mentioned works try to solve the ill-posed
nature of the constancy problem either by constraining the size
of the feasible set of solutions (reducing either the numberof
illuminants or number of the reflectances that can be found in
scenes) or by making physical or statistical assumptions about
the scene and the image content.

None of the previous computational approaches have in-
troduced perceptual constraints. Consequently, very little at-
tention has been paid to how the selected illuminant affects
the perception of the content of the corrected image. Evidence
derived from experimental psychology on natural images gives
support to the conclusion that several different perceptual
mechanisms contribute to achieve constant images [1]. Dif-
ferent mechanisms based on different visual cues such as the
local and global contrast [22], [23], highlights [24], mutual
reflections [25], categorical or naming stability [26] and color
memory of known objects [27], [28] are responsible for the
almost perfect behaviour of the human constancy system. In
this paper we focus on the definition of a color constancy
method that considers the perceptual effects of categorization
on the corrected image.

In this work we concentrate on the naming stability cue.
We propose thenaming hypothesis as a criterion to constrain
the feasible illuminants. We propose to use the capability of
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categorizing, or assigning basic color names, in the corrected
image as the basis to weight all feasible illuminants. In this
sense, preferred illuminants will produce a color categorized
image with useful properties for further recognition tasks.
Moreover, our process can be justified as it produces an
image labelled with the color categories that encode natural
color statistics which have evolved as relevant across different
cultures by receiving a common color name. The existence
of the basic color category terms was noted for the first time
by Berlin and Kay [29], who recorded11 basic terms. These
basic terms were lately measured by Boynton and Olson [30]
in psychophysical experiments.

Using the category hypothesis, we propose a computational
approach that is a probabilistic method similar to illuminant
voting [16] or color by correlation [13], but with two essential
novelties that we list below.

Firstly, the method gives a compact framework that allows
prior-knowledge from learnt-color categories to be easilyin-
troduced. Illuminant selection is done through thecategory hy-
pothesis, which is defined as the preference of illuminants that
assign color categories in the corrected images. In particular,
we want to stress that this new algorithm can also be seen as a
generalisation of simpler methods, such as,WhitePatch where
we only consider the white category. This opens up a new way
of generalizing simple methods to allow greater complexity
(i.e. not only by increasing their statistical complexity).

Secondly, we present a fast algorithm that builds a weighted
feasible set for a fine sampling of the feasible illuminants.
This fast algorithm can also be seen as a fast implementation
of the Color by Correlation approach [13] for the 3D case
[31] in the particular case of a diagonal model of illuminant
change. This fast algorithm requires the representation ofthe
weighted feasible set in logarithm space. This in turn improves
the illuminant selection step, since multiple solutions can be
easily considered using a compact representation.

To evaluate the performance of the proposed approach, we
compare our results with the existing state-of-the-art in terms
of how well the illuminant is estimated. The results suggest
that our approach achieves the performance of the other
methods, whilst also incorporating the advantages mentioned
above.

The paper has been organised as follows. In section II we
explain the basic color term categories. Afterwards, in section
III we introduce the category hypothesis, and we report the
results compared to other current methods in sections IV and
V. We conclude in section VI.

II. BASIC TERM CATEGORIES

Basic color term categories were first defined by Berlin
and Kay [29], and they were deduced from a large anthro-
pological study based on speakers of 20 different languages
and specific documentation from a further 78 languages. They
concluded that the universal basic color terms defined in most
evolved languages arewhite, black, red, green, yellow, blue,
brown, purple, orange, pink and gray. In subsequent works,
psychophysical experiments have generated data that allow
these basic categories to be specified accurately [30], [32],

[33]. These datasets give11 categories where colors have
been labelled with a unique name. They are obtained from the
averaged judgements given by all subjects in the experiment.

Basic color categories are derived from anthropological and
psychophysical experiments that bring us to the conclusion
that relevant colors are those that receive a common color
name across different cultures. A similar conclusion about
the relevance of these specific color categories has also been
derived from a biological model of the human color sensors
[34]. This work provides strong evidence that color coding
in human vision favours these color categories. There are
evidences that basic color terms are likely to be encoding
fundamental natural color statistics [35]. That makes sense in
an evolutionary theory as they would capture the most relevant
information to survive.

In this work we make use of a mapping of these categories
onto CIELab space provided by Benavente-et al- [33]. The
first row in figure 1 shows the chromaticity of the convex-hull
of these mapped colors at three different levels of intensity in
the CIELab space. These polyedron contain the parts of the
color space that are judged as pure colors (or focal colors);
i.e. those colors named with a unique basic term. We will use
these sets of colors as the anchor categories that will determine
the corrected images. These sets are the focal points(Fi) of
the corresponding color. We use the CIELab space for figure
1 for explanatory purposes but in the rest of the paper we
refer to RGB space that is the space used in all the reported
experiments on the standard datasets. To build the category
matrix in RGB we use the reflectances corresponding to the
named colors, the canonical light (white illuminant) and the
RGB color matching functions.

In order to also encode common changes of these colors
in real scenes, such as those in shadowed areas or textured
surfaces, or even colors reproduced in man-made objects, we
are going to experiment with some extensions of these basic
categories, whilst not extending them beyond the convex-hull
of the basic terms. Therefore, we define our categories depend-
ing on the distance to the focal points, whilst constrainingthem
to remain inside the Convex Hull of the focal terms. Thus, a
categoryCβ

i is defined as

Cβ
i = {p : d(p, Fi) < β, p ∈ CH(F )} (1)

wherep is a point in RGB space,F = {Fi}i=1:11 is the set
of focal colors presented in [33],CH represents the convex
hull of a set of points andd refers to the euclidean distance.

Then, from these equations, we are able to define a family
of category sets by changing theβ value. In Figure 1 we show
some examples for these sets, where the first row represents the
original basic categories (β = 0) as horizontal cross-sections
in Lab space (L = 25, L = 45, andL = 65), and the second
and third rows represent two different sets,β = 10 andβ = 20
respectively. The grey background in all the different plots
represents the global convex hull, which is the growing limit.
To discretize category membership we will use a characteristic
function defined as:
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X
C

β
i

(p) =

{

1 if p ∈ Cβ
i , p 6∈ Cβ

j,j<i

0 otherwise
(2)

whereCβ = {Cβ
i }i=1:11, i encodes each one of the eleven

basic terms, namely{white, black, red, green, yellow, blue,
brown, purple, orange, pink and gray} and p is a color
representation vector. Conditionj < i is imposed to do not
count twice those colors falling in the intersection of two
categories. The order of the categories is not important for
our results since different categories are equally weighted in
our approach.

III. C ATEGORY METHODS

We base our approach on the idea that color constancy
aims to produce corrected images where important contents
are stable. We refer to these important contents as basic color
categories. These anchor categories constitute prior knowledge
that is useful for general image understanding. Therefore we
seek to correct images towards a new representation where
these basic categories are anchors. This idea is formulatedin
the following hypothesis for color constancy:

Category Hypothesis: Feasible illuminants can be weighted
according to their ability to anchor the colors of an image to
basic color categories.

Thus, we will call Category Methods those that, applying
this hypothesis, compute a weighted feasible illuminant set
according to the set of anchor categories being used, and select
one of them that allows us to obtain a corrected image whose
colors falls into these categories.

In Figure 2 we show some examples of the results provided
by the proposed hypothesis using the basic color terms cate-
gories. The original images are shown in the second column,
while the first column presents the categorisation of these
images. In the third column we give the corrected images and
their corrected categorisation is given in the fourth column.
Hence, from the first and the fourth column we can see
how color categorization is changed, from the original to the
corrected image, towards a more colorful image representation
that in turn makes it more stable (e.g. sky is blue, the road is
grey). Clearly, our proposal is simply a bottom-up approach
that pursues a corrected, or more stable, image that needs
further processing for full image understanding.

We will now explain our method in three parts: first, we
will define the general mathematical formulation; secondly,
we will explain the fast implementation of this mathematical
formulation; and finally, we will explain the illuminant selec-
tion criteria.

A. Mathematical formulation

Let us defineP (e|I) as the probability of having illuminant
e in imageI. This is approximated as

P (e|I) ≈
f(e)

∑

ě∈FS f(ě)
= k1 · f(e) (3)

whereFS is the feasible set of illuminants (in the C-Rule
sense, considering as canonical gamut the whole RGB cube)

and the functionf(e) is defined in a voting procedure in the
same manner as Sapiro in [16]. This voting function is defined
as

f(e) =
∑

p∈RGBI

P (e|p) (4)

whereRGBI represents the different colors appearing in the
image, andP (e|p) is the probability of having illuminante
given colorp in the image. This probability is defined to follow
the category hypothesis introduced earlier, thus

P (e|p) = P (e|p, Cβ) =

∑

C
β
i
∈Cβ XC

β
i
(p · diag(e)−1)

∑

C
β
i
∈Cβ

∑

q∈RGB(XC
β
i
(q))

(5)

quantifies the ability of illuminante to categorize colorp in
the set of anchor categories denoted asCβ , and is normalized
by the total amount of nameable colors.X

C
β
i
(x), defined in

equation 2, is responsible for counting the number of colors
falling in each one of the categories for the specific illuminant.

To simplify the previous formulation, the denominator in
equation 5 is substituted by a constant

k2 = 1/
∑

C
β
i
∈Cβ

∑

q∈RGB

(X
C

β
i
(q)) (6)

and we therefore rewriteP (e|I) as

P (e|I) ≈ k1 · k2
∑

p∈RGBI

∑

C
β

i
∈Cβ

X
C

β
i
(p · diag(e)−1). (7)

We want to highlight here, that this compact formulation
could be used for a different set of categories than those used
in this paper. Indeed, existing color constancy methods canbe
incorporated within this framework. For instance, using white
as a unique category means that the method acts as a White-
Patch algorithm, while taking all possible color values fora
certain device as different categories behaves like the Color-
by-Correlation [13] solution in the diagonal case for a 3D color
space.

B. Fast implementation

The main problem of this formulation is its cpu time, which
is large due to the double summation term. Therefore, in
order to reach a fast implementation of the proposed voting
approach, we reformulate equation (7) by reordering sums and
obtaining

P (e|I) ≈ k1 · k2 ·
∑

C
β
i
∈Cβ

∑

p∈RGBI

X
C

β
i
(p · diag(e)−1) (8)

in this way, the inner summation is equivalent to a product of
two functionshistn andX β

Ci
, wherehistn is the normalized

histogram of the imageI andX
C

β
i

is the characteristic function

of a categoryCβ
i . Both functions are defined over the complete

RGB domain which allows the reformulation of the previous
equation as
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(a) L = 25, β = 0 (b) L = 45, β = 0 (c) L = 65, β = 0

(d) L = 25, β = 10 (e) L = 45, β = 10 (f) L = 65, β = 10

(g) L = 25, β = 20 (h) L = 45, β = 20 (i) L = 65, β = 20

Fig. 1. (a) Color name categories with luminance 25 in Lab space (b) Color name categories with luminance 45 in Lab space (c) Color name categories
with luminance 65 in Lab space, (d), (e) and (f) first extension of the categories. (g),(h) and (i) second extension

P (e|I) ≈ k1 ·k2 ·
∑

C
β
i
∈Cβ

∑

r∈RGB

histn(r ·diag(e)−1) ·X
C

β
i
(r).

(9)
Note that from now on, the inner summation is over the set

of possible RGBs instead of over the values appearing in the
image.

At this point we propose to estimate this probability by
removing constantsk1 andk2 and introducing alog monotonic
function in the image domain. This implies that

P (e|I) ≈ k1 · k2 · P̂ (e|I)

∝ P̂ (e|I)

=
∑

C
β
i
∈Cβ

∑

r∈RGB

ĥistn(log(r · diag(e)−1)) · X̂
C

β
i
(log(r))

(10)

where the membership function and the histogram function
have been redefined in log space asX̂

C
β
i
(r) = X

C
β
i
(exp(r))

and ĥistn(x) = histn(exp(x)). Furthermore, considering that
taking logarithms transforms products into additions, we can
write

P̂ (e|I) =
∑

C
β
i
∈Cβ

∑

r∈RGB

ĥistn(log(r) + diag(log(e))−1) · X̂
C

β
i

(log(r))

(11)

which brings us to compute a linear correlation of two
functions

P̂ (e|I) =
∑

C
β
i
∈Cβ

(ĥistn ∗ X̂
C

β
i
)(e) (12)

that can be computed in the Fourier space as a simple product
of functions. Using theFast Fourier Transform (FFT) this can
be done with a computational costO(n3 log(n)).



SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR COMPUTER SOCIETY JOURNALS 5

Fig. 2. Categorized original image (left), original image (center-left), corrected image (center-right), categorized corrected image(right)

C. Illuminant selection

In the foregoing sections we defined a computational frame-
work that provides a weighted set of feasible solutions. The
proposed algorithm assigns different probabilities to allplausi-
ble illuminants accordingly with the category hypothesis.The
next step is to select the most relevant illuminant by using
some specific criterion. To evaluate the performance of the
hypothesis we set up experiments with two different criteria:
i) selecting the illuminant with the maximum probability,
which is the most common approach in probabilistic methods;
and ii) selecting the illuminant by combining our feasible

solutions with solutions provided by other methods which are
based on a complementary hypothesis. In this way we can
evaluate whether the category hypothesis can be improved
by combining it with, for example, an edge-based hypothesis.
This combination criterion can be seamlessly integrated within
the proposed algorithm, which is another advantage of this
framework. The use of a global convolution in the log-RGB
space is the basis that allows the probabilities for a large
sample of illuminants within the feasible set to be calculated,
and allows us to work directly with these probabilities.

Using a maximum criterion we can formulate Category
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(a) (b)

(c) (d)

Fig. 3. Different feasible solutions for the same scene providing different
explanations of that scene

Correlation methods (heretoforeCaC) to deliver a unique
solution, which is given by

ê = arg max
e∈FS

P (e|I) (13)

where ê is the estimated illuminant for the scene based on
equation (3).

Using a combination criterion we are assuming that our
weighted feasible set is providing different plausible explana-
tions of the corrected image. For instance, in some particular
images such as the bananas shown in Figure 3, we can
see that disambiguating the scene illuminant from the object
reflectances is an unsolvable problem. In this case most of
the solutions in the feasible set could be equally plausible
since they could correspond to different ripeness of the fruit or
different illuminants. The four images in Figure 3 have been
obtained from a clustering with standard k-means with four
classes onto the feasible set and extracting the illuminantwith
maximum probability as the representative of each cluster.In
this case, the original image was close to the green bananas
given in solution (a).

Accordingly with the previous observation we can state
that working with multiple solutions can be an improvement
to classical constancy approaches. One of the strengths of
our method relies on the fact that a large sample of likely
illuminants has already been computed. In this way we can
extract multiple solutions by directly thresholding onto the
weighted feasible set. Then, a multiple solution set for a given
imageI is given by

Sα = {e ∈ FS : P (e|I) > α}, (14)

which denotes the set of illuminants having a probability
higher thanα. Providing multiple solutions allows us to
delegate the final selection either to other visual processes with
contextual information or to other top-down selective tasks.

This approach has been used in [36] where an illuminant is
selected to improve a scene recognition task from a variety
of solutions from different constancy methods (and after a
learning step). There are also other methods selecting a unique
solution from a set of precomputed ones [37], [38]. These last
methods use classifications techniques such as decision forest
to this end.

Here in this work, we propose a criterion that estimates
the best illuminant by selecting the solution fromSα =
{Si}i=1,··· ,n that is the most voted-for by solutions derived
from other methods based on different hypotheses and which
are denoted as{Tj}j=1,··· ,m. Formally, we select the most
voted-for illuminant by computing

ê = Sargmaxi #{vj∈v:vj=i} (15)

wherev = {vj}j=1,··· ,m encodes the solution ofSα that is
closest to a solution in{Tj}j=1,··· ,m, and

vj = argmin
i

ang(Si, Tj) (16)

where ang is the angular error distance between two given
illuminants.

With this criterion we select an illuminant which has a high
probability based on our own hypothesis and is reinforced by
being close to the solutions provided by other hypotheses.

IV. EXPERIMENTS

To evaluate our hypothesis we have run our method under
different parameters, varying both the category sets and the
selection criteria. We have used three different datasets and
we have compared our results with the current state-of-the-
art.

We denote our method asCaCβ
sc where sc denotes the

selection criterion used andβ refers to the category threshold
defined earlier. The selection criterion will bem for selection
based on maximum probability andc for a combined selection.
For both selection criteria the value ofβ takes one out of four
possible values:0 (in order to use the basic categories),10,
20 and400. This last value has been defined in order to select
the complete convex hull (grey polygon in Figure 1). In all
the experiments our methods have worked with alogRGB
cube of 50 bins, which implies a sampling of503 different
illuminants.

Specifically for the combined criterion, we have selected
our solutions by settingα = 0.95 · max(P (e/I)). We have
combined these solutions with 24 solutions coming from
different applications of the grey-edge hypothesis. We have
used a wide range of statistical combinations of this hypothesis
by fixing the following parametersp = 1, 6, 11, 16, σ = 1, 3
and n = 0, 1, 2 where p is the Minkowski Norm,σ the
smoothness parameter andn the differentiation order

Here we compare our method with a range of previous
approaches. These methods are divided in two groups: cal-
ibrated and uncalibrated. The first group includes C-Rule
(maximum volume (GM-MV) and average (GM-AVE)) [11]
and Gamut Constrained illuminant estimation (GCIE) [5]. This
last method is constrained with a set of illuminants. We have
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TABLE I
ANGULAR ERROR ON THE DIFFERENT DATASETS.

Method Dataset 1 Dataset 2 Dataset 3
RMS 95% RMS 95% RMS 95%

Our approach
CaC0

m
14.57◦ 26.69◦ 9.38◦ 16.96◦ 8.82◦ 16.06◦

CaC0
c

14.63◦ 27.58◦ 9.42◦ 18.30◦ 8.19◦ 16.11◦

CaC10
m 14.43◦ 26.69◦ 9.89◦ 18.28◦ 8.29◦ 16.11◦

CaC10
c 14.55◦ 27.19◦ 9.60◦ 18.30◦ 7.66◦ 14.87◦

CaC20
m 14.72◦ 27.84◦ 8.98◦ 16.96◦ 7.34◦ 15.20◦

CaC20
c 14.74◦ 28.09◦ 9.43◦ 17.08◦ 7.23◦ 14.85◦

CaC400
m 14.76◦ 27.59◦ 8.99◦ 16.96◦

7.23◦ 14.67◦

CaC400
c 14.79◦ 27.42◦ 9.32◦ 17.08◦ 7.05◦

14.34◦

Uncalibrated methods
Grey-Edge 14.62◦ 27.17◦ 9.48◦ 21.42◦ 8.56◦ 18.96◦

Shades-of-Grey 14.77◦ 27.57◦ 10.07◦ 22.32◦ 8.73◦ 20.50◦

Max-RGB 15.89◦ 30.30◦ 9.58◦ 26.37◦ 11.76◦ 26.54◦

Grey-World 15.97◦ 30.60◦ 13.02◦ 27.61◦ 13.56◦ 29.41◦

no-correction 20.32◦ 37.67◦ 9.75◦ 26.37◦ 19.64◦ 34.95◦

Color by Correlation - - - - 10.09◦ -
Neural Networks - - - - 11.04◦ -

Calibrated methods
GCIE 87 lights - - - - 7.11◦ -
GCIE 11 lights - - - - 6.88◦ -

GM-MV - - - - 6.89◦ -
GM-AVE - - - - 6.86◦ -

used two different constraints: the set of 11 illuminants used
in the image dataset and a set of 87 illuminants including the
previous set. In the second group we include Grey-Edge [9],
Shades of grey [8], Max-RGB [7], Grey-World [6], Color-by-
Correlation [13] and Neural Networks [39].

We have run the Grey-Edge algorithm provided by the au-
thor [9], and have considered the following set of parameters:
0 ≤ n ≤ 2, 0 ≤ σ ≤ 5, 0 ≤ p ≤ 15. For Shades-of-Gray
the values are0 ≤ σ ≤ 5, 0 ≤ p ≤ 15. For the training
of these two methods, we used33% of the images to set the
parameters, and we applied these parameters to the rest of
the images. In this way, independence between training and
testing sets is preserved.

The same experiments have been performed using three
different images datasets that we list below:
Dataset 1. Real-World Images This dataset, created by Ciurea
and Funt [40], is composed of images captured with a grey
sphere in the image field of view. This sphere allows the
estimation of the scene illuminant. In our experiments the
ball has been excluded in order to avoid any influence on
the results. This image dataset is gamma corrected, therefore
we have removed this correction usingγ = 2.2, which is a
typical value used in RGB devices. Furthermore, since this
dataset was recorded with a video-camera, all the image
scenes within each of the 15 scenarios have a high correlation
of image content. To avoid the effects derived from this
fact we have followed a similar procedure from previously
reported experiments. In particular, we have used the frames
extracted in [41], that constitute the biggest independent
image dataset that can be extracted from the Ciurea-Funt
dataset. The total amount of images is1135, but with a
different number of images for each scenario. Both for
Grey-Edge and Shades-of-Gray we have used 5 scenarios for
training and 10 scenarios for testing.

Dataset 2. Barcelona Calibrated dataset This dataset
was firstly defined in [42] with83 images, and is composed
of images captured within the Barcelona area. This dataset
is calibrated and was also acquired with a grey ball in the
field of view. Again, the ball has been excluded. From this
dataset, we have randomly selected two thirds of the images
as a test set and the other one third as a training set for the
Grey-Edge and Shades-of-Gray methods.

Dataset 3. Controlled Indoor scenes This dataset, created at
Simon Fraser University [43], comprises 321 indoor images.
It consists of 31 scenes captured under 11 different conditions,
totalling 321 images. This dataset is formed by raw images,
therefore no gamma correction is needed. In this experiment
we trained both Grey-Edge and Shades-of-Gray by using 10
scenes for training and 21 to test.

In order to analyse whether the category hypothesis
delivers meaningful solutions, we have used the root mean
square (RMS) of the angular error between the solution and
the known scene illuminant. Low RMS error rates imply that
images are generally corrected towards the correct illuminant.
We have also computed the95% error to get an idea on how
robust the different methods are.

V. RESULTS AND DISCUSSION

Results obtained from these experiments are summarized
in Table I. Results are divided into three parts: our results,
uncalibrated methods and calibrated methods in this order.The
first rows of the table are related to our method. In particular,
from the first two rows we can observe that our method
achieves equivalent results to state-of-the-art methods by using
a completely new hypothesis and, furthermore, without the
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Fig. 4. Examples from a Real-World dataset. Original image (left), corrected image (center), categorized corrected image (right).

need for a training step that can tune parameters to the dataset
content. In these first two rows we applied the basic method
CaC0 that simply uses the focal colors of the 11 basic color
categories. Here, the combination criterion does not introduce
critical changes to the performance. In subsequent rows we
study the effect on the performance of our method when
changing the basic categories and in order to compare our
results.

In the second part of the table we report the performance of
different uncalibrated methods. From those methods, we have
reported the results on the three datasets for those methods
where we could run the code; for the remaining methods
(Neural Networks [39] and Color-by-Correlation [13]) we
report the results provided in the literature that were just
for dataset3. For the case of calibrated methods we report
the results for GM-MV and GM-AVE [11] computed by us,
and we have transcribed from previous works the results for
GCIE-11 and GCIE-87 [5]. A clear advantage is shown by
calibrated methods which use the information derived from
knowing camera sensitivities.

TABLE II
ANGULAR ERROR PERFORMANCE BOUND BY SELECTING THE BEST

SOLUTION DURING THE COMBINATION ON THE DIFFERENT DATASETS.

Method Dataset 1 Dataset 2 Dataset 3
CaC0

pb
11.91◦ 6.86◦ 7.12◦

CaC10
pb

11.53◦ 6.83◦ 6.27◦

CaC20
pb

11.81◦ 6.21◦ 5.70◦

CaC400
pb

11.99◦ 6.16◦ 5.54◦

Before analysing the results obtained when changing the
size of the basic color categories, it is worth noting an
important observation provided by experiments not reported
here. We have found that increasing the size of categories
beyond the convex-hull of the basic color categories results in a
significant decrease in performance. This observation supports
the idea that using the basic color terms as centered anchors
is adequate to achieve good adaptation to the most common
image content.

As we can see from the results, for the case of a big real-
world dataset (dataset1) the best results are obtained with
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Fig. 5. Controlled indoor dataset. Original image (left), corrected image by proposed method (center-left), points weighting the selected illuminant (center-
right), categorisation of corrected images (right)

the smallest categoriesCaC0 andCaC10. This result agrees
with the general hypothesis of the method, which contends
that basic color categories encode natural color statistics, since
dataset1 is mostly populated by natural images.

Dataset2 contains a mix of man-made objects and natural
images. The results for this dataset show thatCaC0 outper-
forms state-of-the-art methods. However, better results can
also be achieved by increasing the size of categories. This
result is most likely due to an increase in the percentage of
man-made objects. In general, man-made objects may take
any color (i.e. they are less likely to be basic colors) and may
occur as big homogeneous surfaces (non-textured). The size
of the basic color categories usually agrees with their texture
appearance; for example a big green category correlates with
highly textured green areas in natural vegetation, while yellow
and red correspond with small category volumes correlating
with their less frequent appearance in natural environments.
Big homogeneous areas induced by man-made objects imply
histograms with sharp peaks, in turn provoking an increase in
the number of solutions that can achieve a high weight, which
clearly implies a likely increase in the error measure.

Finally, for the indoor dataset (dataset3), the best results
are achieved when we use the biggest sizes of categories, that
is, the full convex hull of the color categories. This fact can
be explained by the high amount of non-natural and non-
basic colors, such as turquoise or other intermediate colors
which are not basic and appear in big areas of the images.
Again, these images present histograms with sharp peaks due
to the absence of natural textures. It is for this last reason
that the combination criterion works very well in this dataset.

Many different interpretations are plausible, therefore the use
of different cues becomes more important. We can see how
CaC400

c reaches almost the level of calibrated methods when
the categories are adapted to the dataset content.

Apart from the results shown, we want to outline a further
advantage derived from the method. The estimated illuminant
provides us with an annotated image that gives information
about which parts of the images have been selected as anchors
and with which color. In Figure 4 we show some results of
CaC0

m using basic color categories and maximum selection,
for images in dataset1. From left to right, the first column
shows the original image, the second column corresponds
to the corrected image and the third column displays the
categorized image. In Figure 5 we show a similar example for
dataset3 with the same basic method. In this case, the first
and second columns show the original and corrected images
respectively, while the third column shows the points that
have been annotated with basic names in the selected solution.
Finally, the fourth column presents the categorisation of the
corrected images with basic terms.

Here we have also computed the performance bound we can
obtain by improving the illuminant selection step inSα. We
want to emphasize again that all the images selected in this set
were highly categorized with basic colors due to our selection
of the valueα. The results for these performance bound are
shown in Table II. These results reinforce our hypothesis since
they prove that a proper solution is included within the set of
higher categorized images.

The proposed method opens the possibility for further
research related to the introduction of top-down knowledge
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TABLE III
TOP-DOWN APPROACH

Method Dataset 1 Dataset 2 Dataset 3
CaC0

TD
11.51◦ 6.75◦ 7.70◦

from the image content that can further constrain the number
of solutions and consequently allow even better performance.
By top-down knowledge we refer to further processes on the
image content that can provide clues to select which are the
best color categories and even where they should be located
in the image. For example, additional visual cues informing
about the existence of, say, a tree in the image will direct the
method to find green color in that location of the image. To
evaluate the effects of this kind of top-down knowledge onto
the performance of our method, we have done one further
experiment, that is reported in table III.

In this experiment we have applied a pre-computation step
that has provided the basic color categories appearing in the
image under the canonical illuminant. In this way, this specific
set of categories has been used to apply the basic algorithm to
each image. In table III we show the results of estimating
the illuminant by selecting the maximum probability from
the feasible set built using specific categories for each image.
We can see that by introducing information from other top-
down visual processes the improvement in the performance is
substantial.

VI. CONCLUSIONS ANDFURTHER WORK

The main novelty of this work is the definition of a new hy-
pothesis for color constancy that relies on a set of reflectances,
or color categories, that encode relevant color information
in natural scenes. These categories are those that receive a
name across different languages and cultures. These colors
are distributed around the achromatic reflectances and we
hypothesize that they can act as anchors for image correction.

We propose a color constancy method that estimates the best
illuminant accordingly with its ability to label image points
with these basic color categories. We use representatives for
these categories obtained from psychophysical experiments. .
Other categories sets could be tested in further work. Uncal-
ibrated naming experiments have provided a bigger number
of observers in [44] and, in [45], authors propose the use of
different color name dictionaries depending on the background
of the user.

The method we propose builds a set of feasible illuminants
that are weighted accordingly with the hypothesis. A fast
implementation is easily defined by working in log-space. The
proposed algorithm allows to obtain a large sampling of the
feasible solutions that is the basis for a useful framework.
Having a set of multiple solutions allows the provision of
different selection criteria and an open framework to introduce
new cues from complementary visual processes.

We show that our methods achieve current state of art
with some advantages. Our method is a purely bottom-up
method providing a framework for further combination with
complementary visual information. The method is based on

general psychophysical data that can be modified depending
on the application. Lastly, and most importantly, our results are
achieved without the need for a training step, as is requiredin
many other approaches.

The proposed method can be framed within the family of
statistical methods that estimates the illuminant by voting.
The method can be seen as a generalization of previous
approaches such asWhitePatch, which results from using
a single achromatic category in our method, orColor-by-
Correlation (for the3D case) where categories are represented
by the full set of reflectances used.

Further research is now possible to exploit the advantages of
using the weighted feasible set. Complementary visual cues,
or constraints derived from specific visual tasks, can provide
further information to decide on the final illuminant.
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