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ABSTRACT
In this work we present an effective and computationally
simple algorithm for image compression based on Hilbert
Scanning of Embedded quadTrees (Hi-SET). It allows to rep-
resent an image as an embedded bitstream along a fractal
function. Embedding is an important feature of modern image
compression algorithms, in this way Salomon in [1, pg. 614]
cite that another feature and perhaps a unique one is the fact
of achieving the best quality for the number of bits input by the
decoder at any point during the decoding. Hi-SET possesses
also this latter feature. Furthermore, the coder is based on a
quadtree partition strategy, that applied to image transforma-
tion structures such as discrete cosine or wavelet transform
allows to obtain an energy clustering both in frequency and
space. The coding algorithm is composed of three general
steps, using just a list of significant pixels. The implemen-
tation of the proposed coder is developed for gray-scale and
color image compression. Hi-SET compressed images are, on
average, 6.20dB better than the ones obtained by other com-
pression techniques based on the Hilbert scanning. Moreover,
Hi-SET improves the image quality in 1.39dB and 1.00dB in
gray-scale and color compression, respectively, when com-
pared with JPEG2000 coder.

Index Terms— Fractals, Image Coding, Image Compres-
sion, Quadtrees, Wavelet Transforms.

1. INTRODUCTION

One of the biggest challenges of image compressors is the
massive storage and ordering of coefficients coordinates.
Some algorithms, like EZW [2], SPIHT and SPECK [3, 4],
are based on the fact that the execution path gives the correct
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order, as a result of comparison of its branching points[5].
The proposed coder makes use of a Hilbert Scanning, which
exploits the self-similarity of pixels. Hence, applying a
Hilbert Scanning to Wavelet Transform coefficients takes the
advantage of the similarity of neighbor pixels, helping to de-
velop an optimal progressive transmission coder. In this way,
at any step of the decoding process the quality of the recov-
ered image is the best that can be achieved for the number
of bits processed by the decoder up to that moment. Further-
more, the Hilbert’s Space-Filling Curve gives by oneself its
coordinate, since each branch belongs to a big one unless this
is a root branch. Hence, the decoder just needs the magni-
tudes in order to recover a coefficient.

The paper is organized as follows: Section 2 outlines
the Hilbert Scanning, illustrated by a function for generat-
ing recursively Hilbert curves. Section 3 describes the al-
gorithm of the Image Coder based on Hilbert Scanning of
Embedded quadTrees, divided in two parts. In the first part,
Startup Considerations, we show how coordinates of a two-
dimensional array are transformed and ordered by a Hilbert
Mapping and stored into an one-dimensional array, in addi-
tion to test the significance of a quaternary branch. At the
second part, Coding Algorithm, the stages of the algorithm
are described, namely Initialization, Sorting and Refinement
Passes. Experimental results applied for sixteen test images
are given in section 4. In the last section, conclusions are
explained.

2. HILBERT SCANNING

An important image compression task is to maximize the cor-
relation among pixels, because the higher correlation at the
preprocessing, the more efficient the data compression. The
fractal Hilbert Scanning process remains in an area as long
as possible before moving to the neighboring region, thus ex-
ploiting the possible correlation between neighbor pixels.

Let W , X , Y and Z be the upper left, lower left, lower
right and upper right quadrants, respectively. Let U (up:
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W → X → Y → Z), L (left: W → Z → Y → X ), R
(right: Z → W → X → Y), and D (down: X → W →
Z → Y) be the alphabet. Each curve of the alphabet repre-
sents a 4m coefficient arrangement, where m is its level.

High order curves are recursively generated replacing
each former level curve with the four later level curves,
namely U is changed by LUUR, L by ULLD, R by DRRU
and D by RDDL.

(a) Canonical Scanning, Axiom =D [6].

(b) Proposed Scanning, Axiom = U .

Fig. 1. Hilbert’s geometric constructions.

The original work made by David Hilbert [6], proposed
a fractal axiom or initiator with a D trajectory (Figure 1a),
while an U path is proposed to start with, since in a wavelet
transformation the most relevant coefficients are at the upper-
left quadrant, namely at the Residual Plane. The first three
levels are portrayed in left-to-right order by Figure 1b.

3. THE Hi-SET ALGORITHM

3.1. Startup Considerations

3.1.1. Linear Indexing

A linear indexing is developed in order to store the coefficient
matrix into a vector. Let us define the Wavelet Transform
coefficient matrix as H and the interleaved resultant vector as−→H , being 2γ×2γ be the size ofH and 4γ the size of

−→H , where
γ is the Hilbert curve level. Algorithm 1 generates a Hilbert
mapping matrix α with level γ, expressing each curve as four
consecutive indexes. The level γ of α is acquired concate-
nating four different α transformations in the previous level
γ − 1. Algorithm 1 generates the Hilbert mapping matrix α,
where

−→
β refers a 180 degree rotation of β and βT is the linear

algebraic transpose of β. Figure 2 shows an example of the
mapping matrix α at level γ = 3. Thus, each wavelet coeffi-
cient at H is stored and ordered at

−→Hα, being αi the location
of the coefficients into

−→H .

Algorithm 1: Function to generate Hilbert mapping
matrix of size 2γ × 2γ .

Input: γ
Output: α
if γ = 1 then1

α =

[
1 4
2 3

]
2

else3
β = Algorithm 1 (γ − 1)4

α =

[
βT (

−→
β )T + (3× 4γ−1)

β + 4γ−1 β + (2× 4γ−1)

]

5

3.1.2. Significance Test

A significance test is defined as the trial of whether a coeffi-
cient subset achieves the predetermined significance level or
threshold in order to be significant or insignificant. This test
also defines how these subsets are formed.

With the aim of recovering the original image at different
qualities and compression ratios, it is not needed to sort and
store all the coefficients

−→H but just a subset of them: the sub-
set of significant coefficients. Those coefficients

−→Hi such that
2thr ≤ |−→Hi| are called significant otherwise they are called
insignificant. The smaller the thr, the better the final image
quality and the lower the compression ratio.

Let us define a bit-plane as the subset of coefficients So

such that 2thr ≤ |So| < 2thr+1. Let Ĥi be the significance
test of a given subset So. It is defined as the i-th element of a
binary-uncoded output stream Ĥ

Ĥi =
{

1, 2thr ≤ |So| < 2thr+1

0, otherwise . (1)

Algorithm 2 shows how a given subset So is divided into
four equal parts (line 6) and how the significance test (lines 7-
12) is performed, resulting in four subsets (S1, S2, S3 and S4)
with their respective significance stored at the end of Ĥ. The
subsets S1, S2, S3 and S4 are four 2 × 1 cell arrays. The fist
cell of each array contains one of the four subsets extracted
from So (Si(1)) and the second one stores its respective sig-
nificance test result (Si(2)).

Fig. 2. Example of the mapping matrix α with level γ = 3.



Algorithm 2: Subset Significance.
Data: So, thr
Result: S1, S2, S3, S4 and Ĥ
γ= log4(length of So)1
Part 1 of the subsets S1, S2, S3 and S4 is declared with 4γ−1 elements,2
while part 2 with just one element.
i = 13
Ĥ is emptied.4
for j=1 to 4γ do5

Store So(j : i× 4γ−1) into Si(1).6
if 2thr ≤ max |Si(1)| < 2thr+1 then7

Si(2) = 18
Add 1 at the end of the Ĥ.9

else10
Si(2) = 011
Add 0 at the end of the Ĥ.12

i is incremented by 1, whereas j by 4γ−1.13

3.2. Coding Algorithm

Similarly to SPIHT and SPECK [3, 4], Hi-SET considers
three coding passes: Initialization, Sorting and Refinement,
which are described in the following subsections. SPIHT
uses three ordered lists, namely the list of insignificant pix-
els (LIP ), the list of significant sets (LIS) and the list of
significant pixels (LSP ). The latter list represents just the
individual coefficients, which are considered the most impor-
tant ones. SPECK employs two of these lists, the LIS and the
LSP. Whereas Hi-SET makes use of only one ordered list, the
LSP.

3.2.1. Initialization Pass

The first step is to define threshold thr as

thr =
⌊
log2

(
max

{−→H
})⌋

, (2)

that is, thr is the maximum integer power of two not exceed-
ing the maximum value found at

−→H .
The second step is to apply Algorithm 2 with thr and

−→H
as input data, which divides

−→H into four subsets of 4γ−1 co-
efficients and adds their significance bits at the end of Ĥ.

3.2.2. Sorting Pass

Algorithm 3 shows a simplified version of the classification
or sorting step of the Hi-SET Coder. The Hi-SET sorting
pass exploits the recursion of fractals. If a quadtree branch is
significant it moves forward until finding an individual pixel,
otherwise the algorithm stops and codes the entire branch as
insignificant.

Algorithm 3 is divided into two parts: Sign Coding (lines
2 to 9) and Branch Significance Coding (lines 11 to 16). The
algorithm performs the Sign Coding by decomposing a given
quadtree branch up to level γ = 0, i.e. the branch is rep-
resented by only 4 coefficients with at least one of them be-
ing significant. Only the sign of the significant coefficients is

Algorithm 3: Sorting Pass
Data: S1, S2, S3, S4 and γ

Result: LSP and Ĥ
LSP and Ĥ are emptied.1
if γ = 0 then2

for i = 4 to 1 do3
if Si(2) is significant then4

Add Si(1) at the beginning of the LSP .5
if Si(1) is positive then6

Add 0 at the beginning of the Ĥ.7
else8

Add 1 at the beginning of the Ĥ.9

else10
for i=1 to 4 do11

if Si(2) is significant then12
Call Algorithm 2 with Si(1) and thr as input data and Store13
the results into S′1, S′2, S′3, S′4 and Ĥ′.
Call Algorithm 3 with S′1, S′2, S′3, S′4 and γ − 1 as input14
data and Store the results into Ĥ′ and LSP ′.
Add Ĥ′ at the end of the Ĥ.15
Add LSP ′ at the end of the LSP .16

coded, 0 for positives and 1 for negatives. Also each signif-
icant coefficient is added into a spare LSP or LSP ′. The
Branch Significance Coding calls Algorithm 2 in order to
quarter a branch in addition to recursively call an entire sort-
ing pass at level γ − 1 up to reach the elemental level when
γ = 0. The Significance Test results of a current branch (ob-
tained by the Algorithm 2) and the ones of next branches (ac-
quired by Algorithm 3, denoted as Ĥ′) are added at the end
of Ĥ. Also, all the significant coefficients found in previous
branches (all the lists LSP ′) are added at the end of the LSP .

3.2.3. Refinement Pass

At the end of Ĥ, the (thr − 1)-th most significant bit of each
ordered entry of the LSP, including those entries added in the
last sorting pass, are added. Then, thr is decremented and an-
other Sorting Pass is performed. The Sorting and Refinement
steps are repeated up to thr = 1.

4. EXPERIMENTS AND NUMERICAL RESULTS

The Peak Signal to Noise Ratio (PSNR) between the origi-
nal image f(i, j) and the reconstructed image f̂(i, j) is em-
ployed in order to estimate the degradation introduced during
the compression process. The PSNR is defined by

PSNR = 10 log10

(
Gmax

2

MSE

)
, (3)

where Gmax is the maximum possible intensity value in
f(i, j) (M ×N size) and the MSE has the form:

MSE =
1

NM

N∑

i=1

M∑

j=1

[
f(i, j)− f̂(i, j)

]2
(4)



4.1. Comparison with Hilbert Curve based algorithms

Hi-SET has some resemblances with other image compres-
sion algorithms, like the ones developed by Kim and Li [7]
and Biswas [8]. Similarly to them, Hi-SET maximizes the
correlation between pixels using the Hilbert scanning, namely
all three methods use the same fractal structure. Hence it is
important to know if there has been a substantial improve-
ment of such methods. The differences between Hi-SET and
these old methods are that the herein presented method is an
embedded algorithm and proposes a coding scheme, while the
Kim and Biswas methods are not embedded, since the entropy
is encoded by means of a Huffman coder.

Table 1 shows the comparison between the algorithm per-
formed by Kim and Li and Hi-SET only for the case of the
image Lenna (it is the only image reported result by cited
authors). On the average, Hi-SET reduces the Mean Square
Error by 63.07% (Peak Signal-to-Noise Ratio in 4.75dB). In
addition, compared to the algorithm proposed by Biswas (Ta-
ble 2), Hi-SET diminishes the MSE in 84.66% or 8.15dB. For
example, a compressed image with PSNR=28.07dB is stored
by Hi-SET at 4.87kB (0.152 bpp), while the Biswas algo-
rithm needs 21.41kB (0.669 bpp), that is, 4.4 times more than
Hi-SET. Thus, on average our method improves the image
quality of these methods in approximately 6.20dB.

Table 1. Comparing Hi-SET against the algorithm of Kim
[7].

bpp (rate) Kim (PSNR in dB) Hi-SET (PSNR in dB)
0.25 (32.00:1) 27.51 31.00
0.50 (16.00:1) 30.00 34.88
0.75 (10.67:1) 31.49 36.72
1.00 (8.00:1) 32.91 38.30

Table 2. Comparing Hi-SET against the algorithm of
Biswas[8].

bpp (rate) Biswas (PSNR in dB) Hi-SET (PSNR in dB)
0.669 (11.96:1) 28.07 36.15
0.725 (11.03:1) 28.45 36.55
0.788 (10.15:1) 28.73 36.99

4.2. Comparing Hi-SET and JPEG2000 coders

An image compression system is a set of processes with the
aim of representing the image with a string of bits, keeping
the length as small as possible. These processes are mainly
Transformation, Quantization and Entropy Coding. For the
sake of comparing the performance between the JPEG2000
standard [9] and Hi-SET coders, each one develops a near-
lossless compression with the same subset of wavelet coef-
ficients. This way, this subset of wavelet coefficients are
selected from the original source image data Iorg such that
Iorg ≥ 2thr−bpl+1, being bpl the desired bit-plane and thr
the maximum threshold

thr =
⌊
log2

(
max
(i,j)

{∣∣∣Iorg(i,j)

∣∣∣
})⌋

. (5)

These selected coefficients are inverse wavelet trans-
formed in order to create a new source of image data, i.e.
I ′org , which are losslessly compressed by each coder, namely
until the last bit-plane. Figure 3 depicts this process. The
software used to obtain a JPEG2000 compression for the ex-
periments is JJ2000, developed by Cannon Research, École
Polytechnique Fédérale de Lausanne and Ericsson [10]. The
irreversible component transformation (ICT, Y CbCr) is used
in addition to the 9/7 irreversible wavelet transform.

Fig. 3. Bit-plane selection. Some coefficients are selected
provided that they fulfil the current threshold.

Hi-SET is tested on the 24-bit-depth color images of the
Miscellaneous volume of the University of Southern Califor-
nia, Signal and Image Processing Institute image database
(USC-SIPI image database) [11]. This image database in-
cludes, among others, eight 256 × 256 pixel images (Figure
4) and eight 512× 512 pixel images (Figure 5).

Fig. 4. Tested 256×256 pixel 24-bit color images, belonging
to the USC-SIPI image database.



Fig. 5. Tested 512×512 pixel 24-bit Color Images, belonging
to the USC-SIPI image database.

The compression algorithms are evaluated in two exper-
iments: gray-scale images (just Y component) and on color
images (Y CbCr components).

Experiment 1. Gray-scale images. In this experiment, the
source image data both for the JPEG2000 standard
coder and Hi-SET algorithms are the selected images of
the USC-SIPI image database (Figures 4 and 5) trans-
formed into gray-scale images (Y component). Figure
7a shows the average quality of the recovered images
as a function of compression rate, where the differ-
ences between JPEG2000 (heavy dots) and Hi-SET (
heavy stars) are depicted. Hi-SET improves either the
image quality in approximately 1.39dB with the same
compression rate or bit-rate in approximately 0.22bpp
with the same image quality. It implies saving around
1.76KBytes or 7.04KBytes for 256×256 and 512×512
pixels gray-scale images, respectively. On average, a
512 × 512 image compressed by means of JPEG2000
with 30dB needs 15.24KBytes at 0.4763bpp, while
Hi-SET needs 5.7456KBytes less than the standard,
namely at 0.2967bpp. The difference in visual qual-
ity is depicted in Figures 6a and 6e (image Tiffany) and
6b and 6f (image Baboon). Tiffany is compressed at
0.17bpp, while Baboon at 0.86bpp. The image quality
of the recovered image Tiffany coded by JPEG2000 is
1.85dB lower than the one obtained by Hi-SET. Sim-
ilarly, the quality of the image Baboon increases by
2.26dB when Hi-SET is employed.

Experiment 2. Color images. In this second experiment,
the tests are made on the selected images of the USC-
SIPI image database transformed into the same color
space used by JPEG2000 (Y , Cb and Cr). Fig-
ure 7b shows the compression rate and their average
quality. On the average, a 512 × 512 image com-
pressed by Hi-SET (heavy stars) with 35dB is stored
in 62.82KBytes at 1.963bpp, while JPEG2000 (heavy
dots) stores it in 87.97KBytes at 2.749bpp. Figure
6 depicts the differences when the images Lenna and

(a) 28.22dB (b) 23.85dB (c) 26.11dB (d) 30.01dB

(e) 30.07dB (f) 26.11dB (g) 28.78dB (h) 31.85dB

Fig. 6. Examples of reconstructed images compressed by
means of JPEG2000 (a-d) and Hi-SET (e-h) at 0.17bpp (a &
e), 0.86bpp (b & f), 0.39bpp (c & g) and 1.05bpp (d & h).

Peppers are compressed at 0.39bpp and 1.05bpp by
JPEG2000 (c and d) and Hi-SET (g and h), respectively.
At the same compression ratio, Hi-SET improves im-
age quality by 2.67dB for Lenna and 1.84dB for Pep-
pers. On average, Hi-SET either compresses 0.29bpp
more with the same image quality or reduces in 1.00dB
the error with the same bit-rate. Hence Hi-SET saves
2.32KBytes (for 256× 256 images) or 9.28KBytes (for
512×512 images) in comparison to the JPEG2000 stan-
dard coder.

5. CONCLUSIONS

The Hi-SET coder presented in this work is based on Hilbert
scanning of embedded quadtrees. It has low computational
complexity and important properties of modern image coders
such as embedding and progressive transmission. This is
achieved using the principles of partial sorting by magnitude
when a sequence of thresholds decreases. The image coding
results improve 6.20dB the image quality, when compared to
other algorithms that use a Hilbert scanning as a method for
pixel ordering. Hi-SET improves the image quality around
1.39dB when compared to the JPEG2000 standard coder for
gray-scale images and 1.00dB for color images, in addition to
save around 0.22bpp in monochromatic images and 0.29bpp
for RGB images.
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