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Abstract— Color names are required in real-world applications
such as image retrieval and image annotation. Traditionally,
they are learned from a collection of labelled color chips.
These color chips are labelled with color names within a well-
defined experimental setup by human test subjects. However
naming colors in real-world images differs significantly from
this experimental setting. In this paper, we investigate how color
names learned from color chips compare to color names learned
from real-world images. To avoid hand labelling real-world
images with color names we use Google Image to collect a data
set. Due to limitations of Google Image this data set contains a
substantial quantity of wrongly labelled data. We propose several
variants of the PLSA model to learn color names from this noisy
data. Experimental results show that color names learned from
real-world images significantly outperform color names learned
from labelled color chips for both image retrieval and image
annotation.

I. INTRODUCTION

Within a computer vision context color naming is the action
of assigning linguistic color labels to image pixels. We use
color names routinely and seemingly without effort to describe
the world around us. They have been primarily studied in the
fields of visual psychology, anthropology and linguistics [1]. In
computer vision color names are used in the context of image
retrieval. A user might query an image search engine for ”red
cars”. The system recognizes the color name ”red”, and orders
the retrieved results on ”car” based on their resemblance to
the human usage of ”red’. Furthermore, knowledge of visual
attributes can be used to assist object recognition methods.
For example, for an image annotated with the text ”Orange
stapler on table”, knowledge of the color name orange would
greatly simplify the task of discovering where (or what) the
stapler is. Color names are further applicable in automatic con-
tent labelling of images, colorblind assistance, and linguistic
human-computer interaction [2].

One of the most influential works in color naming is the
linguistic study of Berlin and Kay [3] on basic color terms.
They are defined as those color names in a language which
are applied to diverse classes of objects, whose meaning is
not subsumable under one of the other basic color terms,
and which are used consistently and with consensus by most
speakers of the language. Subjects of different languages
where asked to identify prototypes (best examples) of the
color names on a board with 329 color chips. Basic color
names were found to be shared between languages. However
the number of basic terms varies from two in some Aboriginal
languages to twelve in Russian. In this paper, we use the eleven
basic color terms of the English language: black, blue, brown,
grey, green, orange, pink, purple, red, white, and yellow.

To use color naming in computer vision requires a mapping
between RGB values and color names. Generally this mapping
is inferred from a labelled set [4], [5], [6], [7], [8], [9],

[10]. Multiple test subjects are asked to label hundreds of
color chips within a well-defined experimental setup. The
colors are to be chosen from a preselected set of color names
(predominantly the set of 11 basic color terms [6], [8], [9],
[10] ). From this labelled set of color chips the mapping from
RGB values to color names is derived. Throughout the paper
we will refer to this methodology of color naming as chip-
based color naming. Several of these papers have reported
results of applying chip-based color names on real-world
images [11], [6], [7], [8], [9], [12]. Although we do not wish
to cast doubt on the usefulness of chip-based color naming
within the linguistic and color science fields, we do question
to what extent the labelling of isolated color chips resembles
color naming in the real-world. Color naming chips under ideal
lighting on a color neutral background greatly differs from
the challenge of color naming in images coming from real-
world applications without a neutral reference color and with
physical variations such as shading effects and different light
sources. In this paper, we do not aim to improve color naming
of isolated color patches, but instead investigate the use of
color names in images from real-world applications. More
precisely, with image data from real-world applications we
refer to images which can be taken under varying illuminants,
with interreflections, coming from unknown cameras, colored
shadows, compression artifacts, aberrations in acquisition,
unknown camera and camera settings, etc. The majority of the
image data in computer vision belongs to this category: even in
the cases that camera information is available and the images
are uncompressed, the physical setting of the acquisition are
often difficult to recover, due to unknown illuminant colors,
unidentified shadows, view-point changes, and interreflections.

To obtain a large data set of real-world images with color
names we propose to use Google Image search (see Fig. 1).
We retrieve 250 images for each of the 11 color names. These
images contain a large variety of appearances of the queried
color name. E.g. the query ”red” will contain images with
red objects, taken under varying physical variations, such as
different illuminants, shadows, and specularities. The images
are taken with different cameras and stored with various
compression methods. The large variety of this training set
suits our goal of learning color names for real-world images
well, since we want to apply our color naming method on
uncalibrated images taken under varying physical settings.
Furthermore, a system based on Google image has the advan-
tage that it is flexible with respect to variations in the color
name set. Chip-based methods are known to be inflexible with
respect to the set of color names, since adding for example new
color names such as beige, violet or olive, would in principal
imply to redo the human labelling for all patches.

The use of image search engines to avoid hand labelling was
pioneered by Fergus et al. [13] within the context of object
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Fig. 1. Google-retrieved examples for color names. The red bounding boxes indicate false positives. An image can be retrieved with various color names,
such as the flower image which appears in the red and the yellow set.

category learning. The use of internet to obtain color name
labels has been examined by Beretta and Moroney [14][15].
They ask users to label patches with the ”best possible color
name”. The collected color names are used to compile an
online color thesaurus, and they evaluate the color names on
frequency of usage. The difference with the approach applied
in this paper is twofold. Firstly, we use already labelled images
as found by Google image, and therefore do not require users
labelling images. Secondly, their approach aims to correctly
label image patches with color names, whereas the goal of
this paper is to label colors in real-world images.

Retrieved images from Google search are known to contain
many false positives. To learn color names from such a
noisy dataset, we propose to use Probabilistic Latent Semantic
Analysis (PLSA), a generative model introduced by Hofmann
[16] for document analysis. One of the earliest works that
uses generative models to learn the relation between images
and words is that by Barnard et al. [17], where Latent Dirich-
let Allocation (LDA) was used to learn relations between
keywords and image regions. The original work which was
limited to nouns was later extended to also include adjectives
by Yanai and Barnard [18]. They compute the ”visualness” of
adjectives, based on the entropy between adjectives and image
features. The work shows, among other adjectives, results for
color names: several of these are correctly found to be visual,
however the authors also report failure for others. Contrary to
this work, we start from the prior-knowledge that color names
are ”visual” and that they should be learned from the color
distributions (and not for example from texture features), with
the aim to improve the quality of the learned color names.
We model RGB values (words) in images (documents) with
mixtures of color names (topics), where mixing weights may
differ per image, but the topics are shared among all im-
ages. In conclusion, by learning color names from real-world
images, we aim to derive color names which are applicable
on challenging real-world images typical for computer vision
applications. In addition, since its knowledge on color names
is derived from an image search engine, the method can easily
vary the set of color names.

This paper is organized as follows. In Section II, the color
name data sets used for training and testing are presented.

In Section III, our approach for learning color names from
images is described. In Section IV, experimental results are
given, and Section V concludes the paper.

II. COLOR NAME DATA SETS

For the purpose of learning color names from real-world
images, we require a set of color name labelled real-world
images. Furthermore, to evaluate the proposed method a hand-
labelled set of images is necessary. We briefly describe the data
sets below together with three chip-based color name sets.
Google color name set: Google image search uses the image
filename and surrounding web page text to retrieve the images.
As color names we choose the 11 basic color names as
indicated in the study of Berlin and Kay [3]. We used Google
Image to retrieve 250 images for each of the 11 color names.
For the actual search we added the term ”color”, hence for red
the query is ”red+color”. Examples for the 11 color names are
given in Fig. 1. Almost 20 % of the images are false positives,
i.e., images which do not contain the color of the query. We
call this data set to be weakly labelled since the image labels
are global, meaning that no information to which particular
region of the image the label refers is available. Furthermore,
in many cases only a small portion, as little as a few percent
of the pixels, represents the color label. Our goal is to learn
a color naming system based on the raw results of Google
image, i.e., we used both true and false positives.
Ebay color name set: To test the color names a human-
labelled set of object images is required. We used images from
the auction website Ebay. Users labelled their objects with a
description of the object in text, often including a color name.
We selected four categories of objects: cars, shoes, dresses,
and pottery (see Fig. 2). For each object category 121 images
where collected, 12 for each color name. The final set is
split in a test set of 440 images, and a validation set of 88
images. The images contain several challenges. The reflection
properties of the objects differ from matt reflection of dresses
to highly specular surfaces of cars and pottery. Furthermore,
it comprises both indoor and outdoor scenes. For all images
we hand-segmented the object areas which correspond to the
color name. In the remainder of the article when referring to
Ebay images, only the hand segmented part of the images is
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Fig. 2. Examples for the four classes of the Ebay data: blue cars, grey shoes, yellow dresses, and brown pottery. For all images masks with the area
corresponding to the color name are hand segmented. One example segmentation per category is given.

meant, and the background is discarded. This data set together
with the hand-segmented masks are made available online at
http://lear.inrialpes.fr/data.
Chip-based color name sets: In the experimental section we
compare our method to three chip-based approaches. The chip-
based methods resemble in that the color naming is performed
in a controlled environment, where humans label individual
color chips (CC) placed on a color neutral (grey) background
under a known white light source.

• CC-I: dataset with 387 color named chips of Benavente
et al. [8]. The chips are classified into the 11 basic color
terms by 10 subjects. If desired the color patch could
be assigned to multiple color names. Consequently every
patch is represented by its sRGB values (standard default
color space) and a probability distribution over the color
names.

• CC-II: data set of 267 color named Munsell-coordinate-
specified chips [19] developed by the U.S. National
Bureau of Standards (NBS). The appointed color names
are taken from the ISCC-NBS dictionary, which describes
lightness, saturation and hue of the color. Examples are
very dark red and pale yellowish pink. Similarly as
Griffin [5], we reduce the set of color names to the 11
basic color terms by only taking the primary designator
into account (indicated in bold above). Eleven violets
were assigned to purple and six olives to green. Next, the
munsell coordinates are converted to sRGB. In contrast to
the other two sets each color chip is assigned to a single
color name.

• CC-III: dataset of 1014 color chips assembled by
Menegaz et al. [9][10]. The sampling is based on the
OSA-UCS color space [20] which is a perceptually uni-
form space. In [10], it is noted that the applicability of the
original set (containing 424 samples) is limited due to the
absence of samples in saturated colors. This shortcoming
was overcome by the addition of 590 samples in the
saturated color regions. Six subjects were asked to label
the color chips with a distribution over the eleven basic
color terms.

Preprocessing: The Google data set contains of weakly la-
belled data, meaning that we only have a image-wide label
indicating that a part of the pixels in the image can be
described by the color name of the label. To remove some of
the pixels which are not likely indicated by the image label,
we remove the background from Google images by iteratively
removing pixels which have the same color as the border.

Furthermore, since the color label often refers to an object
in the center of the image, we crop the image to be 70% of its
original width and height. Both of these preprocessing steps
were found to improve results.

The Google and Ebay images will be represented by color
histograms. We consider the images from the Google and
Ebay datasets to be in sRGB format. Before computing
the color histograms these images are gamma corrected with
a correction factor of 2.4. Although images might not be
correctly white balanced, we do not applying a color constancy
algorithm, since color constancy often gives unsatisfying
results [21]. Furthermore, many Google images lack color
calibration information, and regularly break assumptions on
which color constancy algorithms are based. The images are
converted to the L∗a∗b∗ color space, which is a perceptually
linear color space, ensuring that similar differences between
L∗a∗b∗ values are considered about equally important color
changes to humans. This is a desired property because the
uniform binning we apply for histogram construction implic-
itly assumes a meaningful distance measure. To compute the
L∗a∗b∗ values we assume a D65 white light source.

For the three chip-based approaches the probability over
the color names of a limited set of samples is given. We also
require the assignments of colors outside and in between the
color chips samples. To compute the probability over the color
names z for all L∗a∗b∗-bins (we use the same discretization
as is applied in our algorithm), we assign to each L∗a∗b∗-bin
w the probability of the neighbors according to

p (z |w ) ∝
N∑

i=1

p (z |wi ) gσ (|wi − w|) (1)

where the wi’s are the L∗a∗b∗-values for the color chips and
N is total number of chips. p (z |wi ) is given for all the color
chips. The distance between the color chips, wi, and w is
computed in L∗a∗b∗-space. For the weighting kernel gσ we
use a Gaussian, for which the scale σ has been optimized on
the validation dataset.

III. LEARNING COLOR NAMES

Latent aspect models have received considerable interest in
the text analysis community as a tool to model documents
as a mixture of several semantic –but a-priori unknown, and
hence “latent”– topics. Latent Dirichlet allocation (LDA) [22]
and probabilistic latent semantic analysis (PLSA) [16] are
perhaps the most well known among such models. Recently
such models have also been applied in computer vision, where



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, DATE 4

images take the role of documents and pixels or small image
patches take the role of words [17], [23], [24], [25], [26], [27].

In our work we use the topics to represent the color names
of pixels. Latent aspect models are of interest to our problem
since they naturally allow for multiple topics in the same
image, as is the case in our Google data set where each
image contains a number of colors. Pixels are represented
by discretizing their L∗a∗b∗ values into a finite vocabulary
by assigning each value by cubic interpolation to a regular
10×20×20 grid in the L∗a∗b∗-space1. An image (document)
is then represented by a histogram indicating how many pixels
are assigned to each bin (word).

A. Generative Models

We start by recalling the standard PLSA model, after which
we propose an adapted version better suited to our problem.
We follow the terminology of the text analysis community.

Given a set of documents D = {d1, ..., dN} each described
in a vocabulary W = {w1, ..., wM}, the words are taken to
be generated by latent topics Z = {z1, ..., zK}. In the PLSA
model the conditional probability of a word w in a document
d is given by:

p (w| d) =
∑

z∈Z

p (w| z)p (z| d) . (2)

Both distributions p(z|d) and p(w|z) are discrete multinomial
distributions, and can be estimated with an EM algorithm [16]
by maximizing the log-likelihood function

L =
∑

d∈D

∑

w∈W

n (d,w) log p (d,w) (3)

where p (d,w) = p (d) p (w|d), and n (d, w) is the term fre-
quency, containing the word occurrences for every document.

The method in Eq. 2 is called a generative model, since it
provides a model of how the observed data has been generated
given hidden parameters (the latent topics). The aim is to find
the latent topics which best explain the observed data. In the
case of learning color names, we model the color values in
an image as being generated by the color names (topics).
For example, the color name red generates L∗a∗b∗ values
according to p(w|t = red). These word-topic distributions
p(w|t) are shared between all images. The amount of the
various colors we see in an image is given by the mixing
coefficients p(t|d), and these are image specific. The aim of
the learning process is to find the p(w|t) and p(t|d) which
best explain the observations p(w|d). As a consequence, colors
which often co-occur are more likely to be found in the
same topic. E.g., the label red will co-occur with highly
saturated reds, but also with some pinkish-red colors due
to specularities on the red object, and dark reds caused by
shadows or shading. All the different appearances of the color
name red are captured in p(w|t = red).

In Fig. 3 an overview of applying PLSA to the problem
of color naming is provided. The goal of the system is to

1Because the L∗a∗b∗-space is perceptually uniform we discretize it into
equal volume bins. Different quantization levels per channel are chosen
because of the different ranges: the intensity axis ranges from 0 to 100, and
the chromatic axes range from -100 to 100.

find the color name distributions p (w|t). First, the weakly
labelled Google images are represented by their normalized
L∗a∗b∗ histograms. These histograms form the columns of
the image specific word distribution p (w|d). Next, the PLSA
algorithm aims to find the topics (color names) which best
explain the observed data. This process can be understood as
a matrix decomposition of p (w|d) into the word-topic distri-
butions p (w|t) and the document specific mixing proportions
p (t|d). The columns of p (w|t) contain the information we
are seeking, namely, the distributions of the color names over
L∗a∗b∗ values.

In the remainder of this section we discuss two adaptations
to the standard model.
Exploiting image labels: the standard PLSA model cannot
exploit the labels of images. More precisely, the labels have
no influence on the maximum likelihood (Eq. 3). The topics
are hoped to converge to the state where they represent the
desired color names. As is pointed out in [28] in the context
of discovering object categories using LDA, this is rarely the
case. To overcome this shortcoming we propose an adapted
model that does take into account the label information.

We propose to use the image labels to define a prior distri-
bution on the frequency of topics (color names) in documents
p(z|d). This prior will still allow each color to be used in
each image, but the topic corresponding to the label of the
image—here obtained with Google—is a-priori assumed to
have a higher frequency than other colors. Below, we use the
shorthands p(w|z) = φz(w) and p(z|d) = θd(z).

The multinomial distribution p(z|d) is supposed to have
been generated from a Dirichlet distribution of parameter αld

where ld is the label of the document d. The vector αld has
length K (number of topics), where αld(z) = c ≥ 1 for
z = ld, and αld(z) = 1 otherwise. By varying c we control
the influence of the image labels ld on the distributions p(z|d).
The exact setting of c will be learned from the validation data.

For an image d with label ld, the generative process thus
reads:

1) Sample θd (distribution over topics) from the Dirichlet
prior with parameter αld .

2) For each pixel in the image

a) sample z (topic, color name) from a multinomial
with parameter θd

b) sample w (word, pixel bin) from a multinomial
with parameter φz

The distributions over words φz associated with the topics,
together with the image specific distributions θd, have to be
estimated from the training images. This estimation is done
using an EM (Expectation-Maximisation) algorithm. In the
Expectation step we evaluate for each word (color bin) w and
document (image) d

p(z|w, d) ∝ θd(z)φz(w). (4)

During the Maximisation step, we use the result of the
Expectation step together with the normalized word-document
counts n(d,w) (frequency of word w in document d) to
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Fig. 3. Overview of standard PLSA model for learning color names. See text for explanation.

compute the maximum likelihood estimates of φz and θd as

φz(w) ∝
∑

d

n(d,w)p(z|w, d), (5)

θd(z) ∝ (αld(z)− 1) +
∑
w

n(d,w)p(z|w, d). (6)

Note that we obtain the EM algorithm for the standard PLSA
model when αld(z) = c = 1, which corresponds to a uniform
Dirichlet prior over θd (in the experimental section indicated
with PLSA-std).
Enforcing unimodality: our second adaptation of the PLSA
model is based on prior knowledge of the probabilities p(z|w).
Consider the color name red: a particular region of the color
space will have a high probability of red, moving away from
this region in the direction of other color names will decrease
the probability of red. Moving even further in this direction
can only further decrease the probability of red. This is caused
by the unimodal nature of the p(z|w) distributions. Next,
we propose an adaptation of the PLSA model to enforce
unimodality to the estimated p(z|w) distributions.

It is possible to obtain a unimodal version of a function by
means of greyscale reconstruction. The greyscale reconstruc-
tion of function p is obtained by iterating geodesic greyscale
dilations of a marker m under p until stability is reached [29].

Consider the example given in Fig. 4. In the example, we
consider two 1D topics p1 = p (z1|w) and p2 = p (z2|w).
By iteratively applying a geodesic dilation from the marker
m1 under the mask function p1 we obtain the greyscale
reconstruction ρ1. The function ρ1 is by definition unimodal,
since it only has one maximum at the position of the marker
m1. Similarly, we obtain a unimodal version of p2 by a
greyscale reconstruction of p2 from marker m2.

Something similar can be done for the color name distribu-
tions p(z|w). We can compute a unimodal version ρmz

z (w)
by performing a greyscale reconstruction of p (z|w) from
markers mz (finding a suitable position for the markers will be
explained below). To enforce unimodality, without assuming
anything about the shape of the distribution, we add the
difference between the distributions p(z|w) and their unimodal
counterparts ρmz

z (z) as a regularization factor to the log-
likelihood function:

L =
∑

d∈D

∑
w∈W

n (d,w) log p (d, w)

−γ
∑

z∈Z

∑
w∈W

(p (z|w)− ρmz
z (w))2 ,

(7)

Adding the regularization factor in Eq. 3 forces the functions
p(z|w) to be closer to ρmz

z (z). Since ρmz
z (z) is unimodal this

will suppress the secondary modes in p(z|w), i.e. the modes
which it does not have in common with ρmz

z (z).
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Fig. 4. Example of greyscale reconstruction. (left) Initial functions p1 = p (z1|w), p2 = p (z2|w), and markers m1 and m2. (middle) Greyscale reconstruction
ρ1 of p1 from m1. (right) Greyscale reconstruction ρ2 of p2 from m2. Since ρ1 is by definition a unimodal function, enforcing the difference between p1

and ρ1 to be small reduces the secondary modes of p1.

In the case of the color name distributions p (z|w) the grey
reconstruction is performed on the 3D spatial grid in L∗a∗b∗

space with a 26-connected structuring element. The markers
mz for each topic are computed by finding the local mode
starting from the center of mass of the distribution p (z|w).
This was found to be more reliable than using the global
mode of the distribution. The regularization functions ρmz

z ,
which depend upon p (z|w), are updated at every iteration
step of the conjugate gradient based maximization procedure
which is used to compute the maximum likelihood estimates of
φz(w). The computation of the maximum likelihood estimate
for θd(z) is not directly influenced by the regularization factor
and is still computed with Eq. 6.

In conclusion, we introduce two improvements of the stan-
dard PLSA model. Firstly, we use the image labels to define
a prior distribution on the frequency of topics. Secondly, we
add a regularization factor to the log likelihood function which
suppresses the secondary modes in the p (z|w) distributions.
The two parameters, c and γ, which regularize the strength of
the two adaptations will be learned from validation data.

B. Assigning Color Names in Test Images

Once we have estimated the distributions over words p(w|z)
representing the topics, we can use them to compute the
probability of color names corresponding to image pixels in
test images. As the test images are not expected to have a
single dominant color, we do not use the label-based Dirichlet
priors that are used when estimating the topics. Instead we
consider two ways to assign color names to pixels.

The first method, PLSA-ind, is based on the individual pixel
values and does not use regional information. The probability
of a color name given a pixel is given by

PLSA− ind : p(z|w) ∝ p(z)p(w|z), (8)

where the prior over the color names p(z) is taken to be
uniform.

The second method, PLSA-reg, takes into account a region
around the pixel. As we expect a relatively small number of
color names within a region, we estimate a region-specific
distribution over the color names. The probability of a color
name given the region is calculated as

PLSA− reg : p(z|w, d) ∝ p(w|z)p(z|d), (9)

where the region-based p(z|d) is estimated using the EM
algorithm with the word topic distribution p(w|z) fixed. The
difference between the two methods is that PLSA-reg esti-
mates the distribution p(z|d) over the color names in the region
to bias the assignments of pixels to color names. In practice
this has the effect that less color names are found in an image,
because the prior p(z|d) will suppress the less occurring color
names, and favor the more occurring color names.

To obtain a probability distribution over the color names
for an image region (e.g., the segmentation masks in the Ebay
image set) we use the topic distribution over the region p (z |d )
described above for PLSA-reg. For PLSA-ind the probability
over the color names for a region is computed by a simple
summation over all pixels in the region of the probabilities
p (z|w), computed with Eq. 8 using a uniform prior. In the
following section, we will compare PLSA-ind and PLSA-reg
for retrieving colored objects and assigning color names to
pixels.

IV. EXPERIMENTAL RESULTS

In the first experiment, we analyze to what extent it is
possible to learn color names from weakly labelled data, and
we compare the proposed learning approach with alternative
learning approaches. In the second experiment, we compare
color names learned from Google Images with the traditional
approach of learning color names from color chip. Finally, we
illustrate the flexibility of our approach with respect to changes
in the set of color names.
Settings: for both tasks, pixel annotation and image retrieval,
we use the Ebay data set presented in Section II. The parameter
c which determines the αld vectors, and the regularization
factor γ are chosen as to optimize the pixel annotation results
on the validation set of the Ebay dataset. In case the color
names are learned from 200 Google images per color name,
we found (c, γ) = (5, 200) to be optimal. We report result for
five learning methods. For PLSA-std color names are learned
with the standard PLSA (corresponding to (c, γ) = (1, 0)),
and assignment of color names in new images without using
the region. PLSA-bg refers to the method proposed in [30].
For PLSA-ind and PLSA-reg color names are learned with our
modified PLSA, and pixel assignment is respectively based on
individual pixels and regions.

For all PLSA methods the word-topic distributions p (w|z)
are initialized by taking for each topic the average of the
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empirical distribution over words of all documents labelled
with the class associated with that topic. Furthermore, we
report pixel annotation results obtained with a linear support
vector machine (SVM). The SVM classifier is trained on the
L∗a∗b∗-histograms of the preprocessed Google images after
which we apply it to classify individual pixels.

All the quantitative results are the average results obtained
over 10 runs of the algorithm. For each run the set of training
data is randomly selected from the total set of 250 Google
images per color name. The maximum training data set we
used is 200 images, since performance gain as a function of
number of training examples was not found to further increase
by adding more training examples.

A. Automatic Learning of Color Names from Weakly Labelled
Data

In this experiment, we analyze to what extent the proposed
approach is capable of learning color names from weakly
labelled data. We test our method on three points. Firstly, do
the proposed adaptation to the PLSA-model improve results.
Secondly, what is the performance behavior as a function of
the number of training samples. Thirdly, does the proposed
method outperform other learning approaches.

The color naming methods are compared on the task of
pixelwise color name annotation of the Ebay images. All pixels
within the segmentation masks are assigned to their most likely
color name. We report the pixel annotation score, which is the
percentage of correctly annotated pixels.

In a first experiment, we investigate if the proposed mod-
ifications of the PLSA model do actually improve results. In
Section III-A we proposed two adaptations to the standard
PLSA model. Firstly, the labels were exploited by setting
a prior on the frequency of the topics in the documents.
Secondly, we added a regularization term to the log likelihood
function (see Eq. 7) to enforce unimodality on the p(z|w)
distributions. We learned the color names based on a subset
of 25 training images of the Google set per color name.
Results are summarized in Fig 5a. The results obtained by
(c, γ) = (∞, 0) are equal to the empirical distribution of the
color names, which means that p(w|z) is obtained by a simple
averaging of the histograms of all the images with the label z.
Both adaptations are shown to improve the annotation results,
and the combined use of the adaptations further improves
results. The method is also shown to improve significantly
upon the method proposed in [30].

A qualitative comparison of two of the settings is shown
in Fig. 6. The image shows pixels of constant intensity, with
varying hue in the angular direction, and varying saturation in
the radial direction. On the right side of the image a bar with
varying intensity is included. Color names are expected to be
relatively stable for constant hue, only for low saturation they
change to an achromatic color (i.e. in the center of the image).
The only exception to this rule is brown which is low saturated
orange. Hence, we expect the color names to form a pie-like
partitioning with an achromatic color in the center, and the
color name brown for low saturated orange. Assigning color
names based on the empirical distribution (Fig. 6(b)) leads to

method cars shoes dresses pottery overall

SVM 53 72 74 65 66.2

PLSA-std 54 74 75 66 67.3

PLSA-bg 56 76 79 68 70.0

PLSA-ind 56 77 80 70 70.6

PLSA-reg 74 94 85 82 83.4

CC-I 39 58 62 48 51.8

CC-II 51 66 69 61 61.8

CC-III 53 71 78 65 66.6

TABLE I
PIXEL ANNOTATION SCORE FOR THE FOUR CLASSES IN THE EBAY DATA

SET. THE FIFTH COLUMN PROVIDES AVERAGE RESULTS OVER THE FOUR

CLASSES. THE TOP FIVE ROWS GIVE THE RESULTS FOR THE VARIOUS

LEARNING APPROACHES FROM THE GOOGLE DATA. THE BOTTOM THREE

ROWS GIVE THE RESULTS FOR CHIP-BASED COLOR NAMING.

many errors, especially in the saturated regions. Our method
trained from only 25 images per color name (Fig. 6(c)) obtains
results much closer to what is expected.

Next, we look at the performance as a function of the
number of training images, see Fig. 5(b). The difference
between the PLSA-ind method with optimal c-γ settings and
the empirical distributions becomes smaller by increasing the
number of training images. However, although the quantitative
difference for the maximum of 200 training images is small,
a qualitative comparison shows that our method obtains sig-
nificantly better results, see Fig. 6(d) and (e). The reason for
the small quantitative difference is that the vast majority of
pixels in real-world images are low saturated. For these pixels
both methods obtain good results. For the more saturated
pixels the empirical distribution fails often, as can be seen
in the saturated green region which is named either red or
blue. Such errors will be considered as very disturbing by
users. We have further plotted a line in Fig. 5(b) indicating
the theoretical maximum for pixel annotation on this data set.
Purely pixel-based annotation is limited by the fact that the
color name distributions have an overlap, i.e. some pixels can
be assigned to multiple color names. The position of the line
is computed by assigning every RGB value of the labelled
Ebay test set images to the color name with which it was
most often labelled. The line provides an upper bound for the
results which can be obtained for pixel classification without
taking any context into consideration.

Finally, we compare the results of our method, learned from
200 Google images per color name, to several other learning
approaches (top five rows of Table I). As can be seen PLSA-std
obtains unsatisfying results, and our improved version PLSA-
ind outperforms SVM and PLSA-bg. Also results for PLSA-
reg are included, where we take the surrounding of the pixel
into account, and use arg maxz p (z |w, d ) to classify the pixel,
where the region (document) is the set of all pixels in the
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labels regularization (c, γ) overall

no no (∞, 0) 55.0

yes no (5, 0) 60.8

no yes (∞, 200) 60.0

yes yes (5, 200) 62.5

PLSA-bg - - 57.3

(a) (b)
Fig. 5. (a) Pixel annotation score (in percentage) of PLSA-ind for different settings of c and γ learned on a training set of 25 images per color name. The
overall column contains the results averaged over the four classes in the Ebay set. Both adaptations of the PLSA model (i.e. exploiting the image labels by
using a label-based prior and using the regularization term) are shown to improve results significantly. PLSA-bg indicates the method proposed in [30]. (b)
Pixel annotation score of PLSA-ind with optimal c-γ settings (blue line) compared to (c, γ) = (∞, 0) setting (green dashed line) as a function of the number
of images in the training set. The black straight line indicates the theoretical maximum of pixel based color naming on this data set.

oon=25,c= oon=200,c= n=200,c=2,        γ=200

(a) (b) (c) (d) (e)

n=25,c=5, γ=200,γ=0 ,γ=0

Fig. 6. (a) A challenging synthetic image: the highly saturated RGB values at the border rarely occur in natural images. (b-e) results obtains with different
settings for c, γ and n the number of train images per color name. The figure demonstrates that our method, images (c) and (e), improves results.

segmentation mask. Taking the context into account does result
in a further large improvement to 83.4%.

The PLSA-ind model learned on the Google images is
available online , in the form of a 32× 32× 32 lookup table
which maps sRGB values to probabilities over color names 2.

B. Comparison to Chip-Based Color Naming

In this experiment we compare color naming based on real-
world images, as done in our method, to chip-based color
naming. The comparison is performed on two tasks: pixel
annotation and image retrieval. The color names are learned
from a training set of 200 Google images per color name.
It should be noted that chip-based methods are not explicitly
designed to perform color naming on real-world images.
Pixelwise Color Name Annotation: First we compare the
results on the experiment discussed in Section IV-A. The
bottom three rows of Table I show the results obtained by the
three chip-based approaches. The gain obtained by learning
color names from real-world images is significant: where the
best chip-based method classifies only 66.6% of the pixels
correctly, our method obtains a score of 70.6%. Examples of
color name annotations based on PLSA-ind and two of chip-
based methods are given in Fig. 7.

2
http://lear.inrialpes.fr/people/vandeweijer/color names.html

Color Object Retrieval: Another application of color names
is retrieval of colored objects. We query the four categories
of the Ebay set (see Section 2) for the 11 color names. For
example, the car category is queried for ”red cars”. The images
are retrieved based on the probability of the query color given
an images, where only pixels within the segmentation masks
are considered.

To assess the performance we compute the equal error rate
(EER) for each query. The average EER’s over the eleven color
names for the various color naming methods are reported in
Table II. Again we find that learning of color names from real-
world images outperforms the chip-based methods consistently
for all classes.

When comparing PLSA-reg and PLSA-ind in the pixel
annotation and retrieval experiments we see a different picture
(consistently over all four categories): for pixel annotation
we observe a significant improvement with PLSA-reg, while
for retrieval for performance of PLSA-reg is only slightly
better. The difference between PLSA-reg and PLSA-ind is that
the former couples the topic assignment of pixels within an
image. This is important for pixel annotation. However, in
the retrieval experiment the difference between the methods is
much smaller. This is due to the fact that the retrieval score
for PLSA-ind also accumulates the color name probabilities
over the region, it is actually equal to PLSA-reg stopped
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Fig. 7. Three examples of pixelwise color name annotation. The color names are represented by their corresponding color. For each example the results of
the chip-based methods CC-I, CC-III, and the real-world color names learned with PLSA-ind are given from left to right. Note that the color names learned
from Google Image search, PLSA-ind, obtain also satisfying results for the achromatic regions, where the chip-based methods often fail.

method cars shoes dresses pottery overall

PLSA-ind 92 98 98 94 95.4

PLSA-reg 93 99 99 94 96.4

CC-I 86 92 93 91 90.4

CC-II 91 93 95 93 93.0

CC-III 91 97 97 92 94.0

TABLE II
AVERAGE EQUAL ERROR RATES FOR RETRIEVAL ON THE FOUR CLASSES

IN THE EBAY DATA SET. THE FIFTH COLUMN PROVIDES AVERAGE RESULTS

OVER THE FOUR CLASSES.

after one iteration. When using PLSA-reg, the accumulation of
color name probabilities is repeated to iteratively estimate the
region-specific prior p(z|d), which is then used as the score.
Our results correspond to the results reported by Quelhas
et al. [25]. In the context of scene classification they also
observed modest improvements in retrieval results when taking
the region-context into account with p(z|d).
Discussion on Limitations of Chip-Based Color Naming:
Our experimental results show that color names learned from
real-world images outperform color names based on color
chips. There are two main reasons for real-world color names
to outperform chip-based methods.

Firstly, for both the CC-I and CC-II data set the color space
is insufficiently sampled. This is the case for saturated colors,
but also other regions of the color space are sparsely sampled,

e.g., the assignment of some of the darker yellows on the
sport car in Fig. 7 (second column) to orange is due to this
fact. The CC-III set has overcome this problem by realizing
a much denser and completer sampling of the sRGB space.
From the results in Table I and II it can be seen that CC-
III does significantly improve over both CC-I and CC-II. An
alternative approach to counter the lack of samples is by using
prior knowledge on the shape of the color name distributions
in the sRGB space, as is done in the work of Benavente[8].

The second reason for failure of chip-based methods is more
fundamental to chip-based approaches. By analyzing in more
detail the errors made by the best chip based method CC-III,
and comparing them to our approach PLSA-ind, we found that
the largest part (almost 70 %) of the error increase is caused
by achromatic colors which are named with chromatic color
names. This can be explained by the difference in training data
between the two methods. Learning color names from data
obtained in a controlled laboratory setting, does not resemble
color naming in the real-world. In the real-world colors are
not presented on a color neutral background under a known
white light source. Instead they appear in a world with inter-
reflections, varying illuminants, colored shadows, compression
artifacts, aberrations in acquisition, etc. This causes the vast
majority of the errors to be made on the achromatic colors
since after a small variations these colors would be considered
chromatic in a laboratory setting. The black region under the
vase is considered partially green by CC-III, as is the road
next to the car. By learning the color names from real-world
images a robustness to deviations which occur from the real
object color to the final sRGB value is automatically achieved.
The learned color names show good robustness to physical
variations, due to shadow and shading, as can be seen from
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1 10 20 30 40

Fig. 8. top: color name categories on the Munsell color array obtained by Benavente [31]. The colored lines indicate the boundaries of the eleven color
categories. below: color names obtained with PLSA-ind learned on the Google data set. Note the differences in chromatic and achromatic assignments.

the uniform color name assignment on the vase and the car.
To further illustrate this, we have applied our color naming

algorithm to the Munsell color array used in the World Color
Survey by Berlin and Kay [3]. The results are shown in Fig. 8.
In the top the results of the chip-based method of Benavente
[31], and in the bottom the results obtained by our approach
PLSA-ind. The color names are similarly centered, and only
on the borders there are some disagreements. The main
difference which we want to point out is that all chromatic
patches are named by chromatic color names in the Benavente
experiment, whereas in our case multiple patches are named
by the achromatic color names, black and white. In the case
of naming individual patches in a controlled environment, the
Benavente set is expected to obtain superior results, whereas
for applications on real-world images, color names derived
from real-word images are expected to obtain better results.

C. Flexibility Color Name Data Set

A further drawback of chip-based color naming is its
inflexibility with respect to changes of the color name set.
For example, Mojsilovic, in her study on color naming [7],
asks a number of human test subjects to name the colors in a
set of images. In addition to the eleven basic color terms beige,
violet and olive were also mentioned. For a method based on
an image search engine changing the set of color names is an
undemanding task, since the collection of data is only several
minutes of work.

Next, we give two examples of varied color name sets. In
Fig. 9 we show prototypes of the eleven basic color terms
learned from the Google images. The prototype wz of a
color name is that color which has the highest probability

beige gold olive crimson indigo violet cyan azure

goluboi siniy

white yellowredpurplepinkorangegreengreybrownblueblack

lavender magenta turquoise

Fig. 9. First row: prototypes of the 11 basic color terms learned from Google
images based on PLSA-ind. Second row: prototypes of a varied set of color
names learned from Google images. Third row: prototypes of the two Russian
blues learned from Google images.

of occurring given the color name wz = argmaxw p (w|z).
Next, we add a set of eleven extra color names, for which
we retrieve 100 images from Google image each. Again the
images contain many false positives. Then a single extra color
name is added to the set of eleven basic color terms, and
the color distributions p (w|z) are re-computed, after which
the prototype of the newly added color name is derived. This
process is repeated for the eleven new color names. The results
are depicted in the second row of Fig.9 and correspond to the
colors we expect to find.

As a second example of flexibility we look into inter-
linguistic differences in color naming. The Russian language is
one of the languages which has 12 basic color terms. The color
term blue is split up into two color terms: goluboi (goluboĭ),
and siniy (siniĭ). We ran the system on 30 images for both
blues, returned by Google image. Results are given in Fig.9,
and correspond with the fact that goluboi is a light blue and
siniy a dark blue. This example shows internet as a potential
source of data for the examination of linguistic differences in
color naming.
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V. CONCLUSIONS

In this paper, we have shown that color names learned
from real-world images outperform chip-based color names
on real-world applications. Furthermore, we have shown that
real-world color names can be learned from weakly labelled
images returned by Google Image search, even though the
retrieved images contain many false positives. Learning color
names from image search engines has the additional advantage
that the method can easily vary the set of desired color
names, something which is very costly in a chip-based setting.
Finally, we show that our adapted version of the PLSA model
outperforms the standard PLSA model significantly, and that
the use of regional information is beneficial for color name
annotation.

In a wider context this article can be seen as a case study
for the automatic learning of visual attributes [18][32]. In
recent years the computer vision community has achieved
significant progress in the field of object recognition. Now
that it is possible to detect objects such as people, cars,
and vases in images, the question arises if we are able to
retrieve small people, striped vases, and red cars. The scope
of these so called visual attributes is vast: they range from
size descriptions, such as large, elongated, and contorted, to
texture descriptions such as striped, regular, and smooth, to
color descriptions, such as red, cyan and pastel. The challenges
which arose in the development of our automatic color naming
system can be seen as exemplary for the problems which arise
for visual attribute learning in general.
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