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Abstract. In this paper, we present a fuzzy-set of parametric func-
tions, which segment the CEILAB space into 11 regions, which cor-
respond to the group of common universal categories present in all
evolved languages as identified by anthropologists and linguists.
The set of functions is intended to model a color-name assignment
task by humans and differs from other models in its emphasis on the
intercolor boundary regions, which were explicitly measured by
means of a psychophysics experiment. In our particular implemen-
tation, the CIELAB space was segmented into 11 color categories
using a triple-sigmoid function as the fuzzy-sets basis, whose pa-
rameters are included in this paper. The model’s parameters were
adjusted according to the psychophysical results of a yes/no dis-
crimination paradigm where observers had to choose (English)
names for isoluminant colors belonging to regions in between neigh-
boring categories. These colors were presented on a calibrated
CRT monitor (14-bit�3 precision). The experimental results show
that intercolor boundary regions are much less defined than ex-
pected, and color samples other than those near the most represen-
tatives are needed to define the position and shape of boundaries
between categories. © 2009 Society for Imaging Science and
Technology.
�DOI: XXXX�

INTRODUCTION
One of the goals of image recognition and labeling algo-
rithms is to provide a lexical description of the contents of
an image. To do this, the algorithm should be able to iden-
tify objects and objects’ properties in the same way humans
do. In this context, it is important to remind ourselves that
the (much smaller) problem of assigning a given name to
each particular color in an image has not yet been solved.
Far from it, there is still a lack of understanding of the link
between low-level color features and the high-level semantics
that humans use to name these colors (the so-called seman-
tic gap).

Much of what we understand today about perceived
color categories and language comes from Berlin and Kay’s1

large survey of languages. Their main findings pointed to the
existence of 11 basic terms (categories) common to the most
evolved languages. Since then, many workers have explored
the relationships between perceived colors and language.2–7

Most of these works have confirmed the existence of the 11
basic terms and have located the best representatives (also
called focal colors) and in some cases estimated the bound-
aries of each basic color on different color spaces.

There have been some recent computational models,8–11

which automate the color-naming task, incorporating results
from previous psychophysical experiments. However, in
most cases, the experimental data collected are near the so-
called focal colors or colors that are the most representative
of a given color name. One arguable weakness of this ap-
proach is that it relies on subjective membership values
given to color samples by observers using an arbitrary rating
scale. Moreover, these ratings are likely to be more accurate
near the focal colors and less accurate near the color bound-
aries, i.e., the positions of the boundary lines may not be
accurately defined, and the same is true for the slopes of the
membership functions. This leaves a large amount of uncer-
tainty when modeling the regions of color space that are
near the color-name boundaries, which are usually just in-
terpolated, assuming that the boundaries are equidistant
from the corresponding focal colors. A separate issue con-
cerns the sharpness of the transition between a color name
and the next, which varies for the different color boundaries
and is usually estimated from insufficient data.

Our particular solution to these problems is to redefine
the boundary regions by means of a parametric model,
which adjusts its frontiers (both position and transition
steepnesses) according to psychophysical data collected in
conflictive regions of the color space. One very convenient
model for this purpose was proposed by Benavente et al.,10

and our psychophysical data were collected with this model
in mind by means of an experiment designed so that sub-
jects have a very limited choice of responses (see below).

A PARAMETRIC MODEL TO REPRESENT COLOR
BOUNDARY TRANSITIONS
The computational model proposed in 2008 by Benavente et
al.10 is a good candidate for adapting the color-name bound-
aries to a new set of psychophysical results. It considers Ber-
lin and Kay’s 11 basic colors and uses parametric fuzzy
membership functions (three-dimensional regions, which
define the certainty of a certain value—color—to be named
with its corresponding color name) based on a combination
of sigmoids with an elliptical center. The main advantage of
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this model is that it contains parameters, which can be ad-
justed to modify the shape of its regions and does a reason-
able job of fitting to previous psychophysical data.1–4 Panel
(a) of Figure 1 shows the characteristic sigmoids used as
membership functions for this model.

The shape of the membership functions is determined
by the following relationship:

TSE�p ;�� = DS�p ;t,�DS� · ES�p ;t,�ES� , �1�

where TSE is the acronym for triple-sigmoid with elliptical
center (the product of all functions), ES represents the
elliptical-sigmoid function (which models the central achro-
matic region)

ES�p ;t,�ES�

=
1

1 + exp�− �e��u1R�Ttp

ex
�2

+ �u2R�Ttp

ey
�2

− 1��
�2�

and DS (double-sigmoidal function) is the product of the
functions S1 and S2 (sigmoidal functions oriented with re-
spect to x and y, respectively)

DS�p ;t,�DS� = S1�p ;t,�y,�y� · S2�p ;t,�x,�x� , �3�

Si�p ;t,�,�� =
1

1 + e−�uiR�Ttp
, i = 1,2. �4�

This model divides the CIELAB color space in six levels
along the L-axis, and all the colors inside each level are mod-
eled by a set of TSE functions. An example of how different
membership functions combine to divide one level of the
CIELAB color space is shown in panel (b) of Fig. 1. In panel
(c) the six planes with the TSE functions are shown in the
center of each level.

Table I shows a list of the parameters that best fitted the
model defined above to fuzzy data provided by Seaborn et
al.,8 which were obtained from Sturges and Whitfield con-
sensus areas (regions of no confusion). For more details see
Benavente et al.10

PSYCHOPHYSICAL METHODS TO EVALUATE COLOR
BOUNDARY TRANSITIONS
With the aim of providing the model with data to better
adjust its color transitions, we designed a psychophysical ex-
periment where subjects had to name color patches located

Figure 1. Fuzzy membership regions proposed by Benavente et al. to segment the color space, based on a
product of sigmoids and an elliptical center. Panel �a� shows an individual TSE function, panel �b� shows the
combination of different TSEs to obtain the color space segmentation for a given value of L, and panel �c�
shows the six different levels of L as defined by the model.
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in regions far away from the most representative colors (fo-
cal colors). These experimental colors were chosen to lie
along a line (in CIELAB space) crossing the border between
two color names according to the original Benavente et al.10

model. The two initial colors (or reference colors) had the
same luminance (“L” value) and were chosen to be suffi-
ciently apart so that their names were not confused. There
were 37 color pairs in three L planes in total (L=36, L=58,
and L=81). Achromatic boundaries (those around the “ach-
romatic center”) were not explored here. Given the particu-
lar characteristics of these frontiers (e.g., background color

and adaptation states influence on the results, the appear-
ance of contact points among three color regions, etc.) they
will be explored in a future experiment. Figure 2 shows the
arrangements of these initial colors in CIELAB space. The
solid lines represent the transitions going from one color
name to its neighbor along which experimental colors were
chosen.

In a given experimental trial, subjects were presented
with the calibrated square color patches at the center of a
CRT monitor (Viewsonic pf227f) using Cambridge Research
Systems Bits�� video processor capable of displaying colors

Table I. List of parameters that define the fuzzy membership regions proposed by Benavente et al.10 for all six luminance planes.

Achromatic axis

Black-gray boundary tb = 28, 28, �b = −0 , 71

Gray-white boundary tw = 79, 65, �w = −0 , 31

Luminance plane 1 Luminance plane 2

ta = 0 , 42, ea = 5 , 89, �e = 9 , 84 ta = 0 , 23, ea = 6 , 46, �e = 6 , 03

tb = 0 , 25, eb = 7 , 47, �= 2 , 32 tb = 0 , 66, eb = 7 , 87, �= 17, 59

�a �b �a �b �a �b �a �b

Red −2.24 −56.55 0.90 1.72 Red 2.21 −48.81 0.52 5.00

Brown 33.45 14.56 1.72 0.84 Brown 41.19 6.87 5.00 0.69

Green 104.56 134.59 0.84 1.95 Green 96.87 120.46 0.69 0.96

Blue 224.59 −147.15 1.95 1.01 Blue 210.46 −148.48 0.96 0.92

Purple −57.15 −92.24 1.01 0.90 Purple −58.48 −105.72 0.92 1.10

Pink −15.72 −87.79 1.10 0.52

Luminance plane 3 Luminance plane 4

ta = −0 , 12, ea = 5 , 38, �e = 6 , 81 ta = −0 , 47, ea = 5 , 99, �e = 7 , 76

tb = 0 , 52, eb = 6 , 98, �= 19, 58 tb = 1 , 02, eb = 7 , 51, �= 23, 92

�a �b �a �b �a �b �a �b

Red 13.57 −45.55 1.00 0.57 Red 26.7 −56.88 0.91 0.76

Orange 44.45 −28.76 0.57 0.52 Orange 33.12 −9.90 0.76 0.48

Brown 61.24 6.65 0.52 0.84 Yellow 80.10 5.63 0.48 0.73

Green 96.65 109.38 0.84 0.60 Green 95.63 108.14 0.73 0.64

Blue 199.38 −148.24 0.60 0.80 Blue 198.14 −148.59 0.64 0.76

Purple −58.24 −112.63 0.80 0.62 Purple −58.59 −123.68 0.76 5.00

Pink −22.63 −76.43 0.62 1.00 Pink −33.68 −63.30 5.00 0.91

Luminance plane 5 Luminance plane 6

ta = −0 , 57, ea = 5 , 37, �e = 100, 00 ta = −1 , 26, ea = 6 , 04, �e = 100, 00

tb = 1 , 16, eb = 6 , 90, �= 24, 75 tb = −1 , 81, eb = 7 , 39, �= −1 , 19

�a �b �a �b �a �b �a �b

Orange 25.75 −15.85 2.00 0.84 Orange 25.74 −17.56 1.03 0.79

Yellow 74.15 12.27 0.84 0.86 Yellow 72.44 16.24 0.79 0.96

Green 102.27 98.57 0.86 0.74 Green 106.24 100.05 0.96 0.90

Blue 188.57 −150.83 0.74 0.47 Blue 190.05 −149.43 0.90 0.60

Purple −60.83 −122.55 0.47 1.74 Purple −59.43 −122.37 0.60 1.93

Pink −32.55 −64.25 1.74 2.00 Pink −32.37 −64.26 1.93 1.03
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with 14-bit precision. The patches subtended 5.2° to the
observers, the viewing distance was 166 cm, and the presen-
tation time was 500 ms. The background to the color
sample was black, but to give observers a luminance refer-
ence, there was a white frame 23 mm wide at the borders of
the screen (D65, Lum=124.83 cd/m2). After each presenta-
tion there was a gray mask for at least 1 s. The short pre-
sentation times were chosen to minimize possible color af-
terimages (caused by fatigued cells in the retina) or any
other adaptation effects.

There were ten naive observers (all native English speak-
ers) and two experienced observers (native Spanish speakers
with a good level of spoken English). All of them were tested
with the Farnsworth D-15 test to guarantee normal color
vision. After each presentation, observers were asked to se-
lect the name that best described the color that they had just
seen among two words appearing on-screen after the presen-
tation (yes/no paradigm). The algorithm selected the (inter-
mediate) colors to be presented next following a QUEST
(Ref. 12) protocol (number of trials=40). Each color pair

Figure 2. Disposition of the initial colors in CIELAB space. They were selected to lie across the boundaries of
the color-name regions of Benavente et al.10
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was repeated three times, and 50% thresholds were deter-
mined using the QUEST’s mean threshold estimate.13,14

RESULTS
Figure 3 shows an exemplary set of results, where the x-axis
represents the color transition along the line crossing the low
saturation blue-green color-name boundary. Each empty
box represents the average of several presentations (color
patches) in a given section of the continuous line. In this
example, an x value of 0 equals “green” (one of the extremes
of the low saturation green-blue line in the previous figure)
and 1 equals “blue” (the other extreme). A higher value of
the y-axis means that colors were labeled as blue in most
presentations, and a low value means that the color was
labeled as green in most presentations. The threshold lies
where colors were equally labeled green or blue by subjects
(50% of responses).

Figure 4 shows a summary of the results for all 12 sub-
jects corresponding to the intermediate �L=58) plane. The
radial pseudocolored lines of the central figure represent the
color-name boundaries determined by Benavente et al.10

Notice that the size of the “red” region is relatively small.
This is because the Benavente et al. model was based on
fitting psychophysical data produced with physical samples,
which have a restricted color range because of the limitations
in reproducing some colors with pigments (as noticed by
Boynton15). Thresholds across color boundaries were mea-
sured (three times for each subject), and the regions where
these thresholds fall are highlighted as bars. Gray bars rep-
resent the regions where the majority of the thresholds oc-
curred for all subjects (the length of the bar is equal to the
standard deviation of the distribution of thresholds). Black
bars represent the position of secondary peaks in bimodal
distributions, signaling the presence of another possible
threshold. We did not find any significant difference between

the majority of speakers of English as a first language and
the two speakers of English as a second language (as re-
ported elsewhere16). Fig. 4 also shows the histogram distri-
bution of six exemplary boundary zones. In these histo-
grams, the distance between each pair of colors was divided
in ten “bins.” The appearance of secondary peaks seems to
indicate that in some cases perhaps extra color categories
(apart from the initial 11) may be needed to account for the
large variability of the data. For example, in all cases the
boundary between green and blue presents a secondary
peak, which may indicate the presence of an intermediate
“turquoise” color area. Other frontiers seem to be more or
less unchanged.

The results of the experiment were used to readjust the
parameters of the color-naming model. On the three levels
(L=36, L=58, L=81) used in the experiment, � parameters
(which control the location of the boundaries) were modi-
fied to place the boundary between each pair of neighboring
colors at the angle corresponding to the highest peak of the
distribution of thresholds from the experiment. On the
other hand, � parameters (which control the slope of the
membership transition), were readjusted according to the
standard deviation of the calculated thresholds. Parameters
of the intermediate levels, for which there are no experimen-
tal data, were interpolated from the measured values. In
Table II we present the new set of parameters for the color-
naming model obtained after the readjustment process.

Figure 5 shows the new set of color-name boundaries,
accounting for the new data (intercolor regions have been
redrawn). The enlarged “uncertainty regions” around the
color boundaries account for the fact that there were large
variations in the position of the threshold across subjects
and in some cases for the same subject. The black dashed
lines on the last panel of Fig. 5(b) were added to draw at-
tention to the emergence of intermediate areas between

Figure 3. Exemplary result from a single experiment �for subject J.V.� involving the green-blue color boundary
�L=36, low saturation color pair�. The solid line shows the psychometric function, and the cross represents
QUEST’s mean threshold estimate.
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color regions (such as that appearing between blue and
green, which correspond to turquoise, a color considered
nonbasic). Such areas are determined by the appearance of
secondary peaks in the histogram distribution of thresholds,
and they happen mostly because some observers, when
forced to choose, cluster together the intermediate color with
blue and some others cluster it with green. A similar effect
appears consistently between the purple and pink regions.

CONCLUSIONS AND FUTURE WORK
In this paper we have refined our previous parametric model
of color naming. This model (originally introduced by
Benavente et al.) consists of a fuzzy mathematical formula-
tion with a set of functions providing memberships for 11
basic color categories. The improvement consists of deter-
mining the shape and position of the color categories’
boundaries by measuring them psychophysically (as op-
posed to just interpolating from focal colors data). The psy-
chophysical experiment is based on a yes/no paradigm using
only the 11 basic terms, and the model was readjusted to
account for its results. The new set of parameters for the
color-naming model was obtained. Although we have not
compared our results to color-naming data from previous
research, we are currently compiling such evaluation.

Our results also show that to adjust the model we need
both, the samples near the focal colors and psychophysical
measures on the boundary regions. The latter not only can
help further define the position of the intercolor regions, but
also provide a measure of the uncertainty between colors.
Our results may be interpreted as some evidence for the
need of other nonbasic color categories to explain specific
uncertainties. This is suggested by bimodal threshold distri-
butions on certain intercolor regions, which may be due to
the emergence of nonbasic categories that shift the boundary
depending on the observer. Hence, one way to improve the
color-naming model could be to consider new color terms
for these intercolor regions. For example, looking at the re-
sults outlined in Fig. 5 one could speculate that:

(a) As mentioned before there might be an “emerging”
color-name region between blue and green (tur-
quoise) and between purple and pink (mauve).

(b) In the blue/purple interface there might be another
emergent color (that has been called violet5 and
could also be called indigo).

(c) In the area bordering the orange/pink/brown/
yellow/regions several bimodal threshold distribu-
tions have emerged. Some possible names have been

Figure 4. Experimental results for plane L=58. The hot spots �pseudocolored radial lines in the central plot�
represent the color-name boundaries of the Benavente et al. model.10 Thresholds were measured for all
observers along the solid lines on the chromaticity plane �central plot�. The gray and black bars show the
regions where the majority of the thresholds was measured. Some of the histograms showing the distribution of
thresholds along the lines are shown as side-figures. The length of the bar is equal to the standard deviation of
the measured thresholds.
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proposed for this area, such as beige,4,17 cream,4,17

peach,3,5 tan,3 and flesh.5

Considering the above, it might be desirable to extend
the parametric model by adding new fuzzy-sets. The current
model assumes the Berlin and Kay hypothesis of 11 basic
terms by constraining all the sets to a unity-sum at any point
in the space. New color terms could be inserted on this
frame as special sets with membership functions overlapping
the current ones without the unity constraint. These
nonbasic color categories emerging from intercolor uncer-
tain regions would require a deeper study to be assigned

with an agreed color term. In this paper we have hypoth-
esized with some terms for the uncertainty regions. Further
research is required to extend the model of basic terms, to
better locate the exact regions, and to set agreed terms for
them.

Finally, it has been suggested that our choice of color
space (CIELAB) is obsolete and that a more perceptually
equidistant space (such as CIECAM02) should have been
selected. Although the variability of results (some subjects
produced large threshold variations even when presented
with the same initial color pair for the second time a few

Table II. New set of parameters adjusted to account for the results of the psychophysical experiment.

Achromatic axis

Black-gray boundary
Gray-white boundary

tb = 28, 28, �b = −0 , 71
tw = 79, 65, �w = −0 , 31

Luminance plane 1 Luminance plane 2

ta = 0 , 42, ea = 5 , 89, �e = 9 , 84 ta = 0 , 23, ea = 6 , 46, �e = 6 , 03

tb = 0 , 25, eb = 7 , 47, �= 2 , 32 tb = 0 , 66, eb = 7 , 87, �= 17, 59

�a �b �a �b �a �b �a �b

Red −2.24 −56.55 0.40 0.50 Red 10.00 −45.00 0.20 0.25

Brown 33.45 −5.00 0.50 0.45 Brown 45.00 −5.00 0.25 0.45

Green 85.00 115.00 0.45 0.25 Green 85.00 115.00 0.45 0.25

Blue 205.00 −155.00 0.25 0.60 Blue 205.00 −159.00 0.25 0.60

Purple −65.00 −92.24 0.60 0.40 Purple −69.00 −115.00 0.60 0.45

Pink −25.00 −80.00 0.45 0.20

Luminance plane 3 Luminance plane 4

ta = −0 , 12, ea = 5 , 38, �e = 6 , 81 ta = −0 , 47, ea = 5 , 99, �e = 7 , 76

tb = 0 , 52, eb = 6 , 98, �= 19, 58 tb = 1 , 02, eb = 7 , 51, �= 23, 92

�a �b �a �b �a �b �a �b

Red 13.57 −55.00 0.25 0.57 Red 15.00 −57.00 0.40 0.70

Orange 35.00 −28.76 0.57 0.52 Orange 33.00 −20.00 0.70 0.48

Brown 61.24 0.00 0.52 0.45 Yellow 70.00 5.67 0.48 0.30

Green 90.00 112.00 0.45 0.20 Green 95.67 110.00 0.30 0.20

Blue 202.00 −160.00 0.20 0.50 Blue 200.00 −163.00 0.20 0.40

Purple −70.00 −112.63 0.50 0.42 Purple −73.00 −115.00 0.40 0.25

Pink −22.63 −76.43 0.42 0.25 Pink −25.00 −75.00 0.25 0.40

Luminance plane 5 Luminance plane 6

ta = −0 , 57, ea = 5 , 37, �e = 100, 00 ta = −1 , 26, ea = 6 , 04, �e = 100, 00

tb = 1 , 16, eb = 6 , 90, �= 24, 75 tb = 1 , 81, eb = 7 , 39, �= −1 , 19

�a �b �a �b �a �b �a �b

Orange 29.00 −15.85 0.60 0.54 Orange 29.00 −13.00 0.40 0.60

Yellow 74.15 7.00 0.54 0.47 Yellow 77.00 10.50 0.60 0.65

Green 97.00 110.00 0.47 0.20 Green 100.50 110.00 0.65 0.25

Blue 200.00 −160.00 0.20 0.37 Blue 200.00 −155.00 0.25 0.35

Purple −70.00 −116.00 0.37 0.45 Purple −65.00 −127.50 0.35 0.65

Pink −26.00 −61.00 0.45 0.60 Pink −37.50 −61.00 0.65 0.40
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minutes later) is bound to mask any further refinements
coming from the selection of color space, this might be an
option to explore in the future.

Acknowledgments
This work has been partially funded by projects TIN 2007-
64577 and CSD2007-00018 of the Spanish Ministerio de
Educación y Ciencia (MEC), and EC grant IST-045547 for
the VIDI-video project. R. Benavente and C. A. Párraga were
funded by the “Juan de la Cierva” (JCI-2007-627) and
“Ramón y Cajal” (RYC-2007-00484) postdoctoral fellow-
ships from the Spanish MEC.

REFERENCES
1 B. Berlin and P. Kay, Basic Color Terms: Their Universality and Evolution

(University of California Press, Berkeley, CA, 1969), p. 1991.
2 P. Kay and C. K. McDaniel, “The linguistic significance of the meanings

of basic color terms,” Language 54, 610 (1978).
3 R. M. Boynton and C. X. Olson, “Locating basic colors in the OSA

space,” Color Res. Appl. 12, 94 (1987).
4 J. Sturges and T. W. A. Whitfield, “Locating basic colors in the Munsell

space,” Color Res. Appl. 20, 364 (1995).
5 S. Guest and D. Van Laar, “The structure of colour naming space,”

Vision Res. 40, 723 (2000).
6 Z. Wang, M. R. Luo, B. Kang, H. Choh, and C. Kim, “An algorithm for

categorising colours into universal colour names,” Proc. CGIV: 3rd
European Conference on Colour in Graphics, Imaging, and Vision (IS&T,

Springfield, VA, 2006) pp. 426–430.
7 R. Benavente, M. Vanrell, and R. Baldrich, “A data set for fuzzy colour

naming,” Color Res. Appl. 31, 48 (2006).
8 M. Seaborn, L. Hepplewhite, and J. Stonham, “Fuzzy colour category

map for the measurement of colour similarity and dissimilarity,” Pattern
Recogn. 38, 165 (2005).

9 A. Mojsilovic, “A computational model for color naming and describing
color composition of images,” IEEE Trans. Image Process. 14, 690
(2005).

10 R. Benavente, M. Vanrell, and R. Baldrich, “Parametric fuzzy sets for
automatic color naming,” J. Opt. Soc. Am. A 25, 2582 (2008).

11 G. Menegaz, A. L. Troter, J. Sequeira, and J. M. Boi, “A discrete model
for color naming,” EURASIP J. Appl. Signal Process. 2007, 113 (2007).

12 A. B. Watson and D. G. Pelli, “QUEST: A Bayesian adaptive
psychometric method,” Percept. Psychophys. 33, 113 (1983).

13 D. G. Pelli, “The ideal psychometric procedure,” Invest. Ophthalmol.
and Vis. Sci. 28, 336 (1987).

14 P. E. King-Smith, S. S. Grigsby, A. J. Vingrys, S. C. Benes, and A.
Supowit, “Efficient and unbiased modifications of the QUEST threshold
method: Theory, simulations, experimental evaluation and practical
implementation,” Vision Res. 34, 885 (1994).

15 R. M. Boynton, “Insights gained from naming the OSA colors,” in Color
Categories in Thought and Language, edited by C. L. Hardin and L. Maffi
(Cambridge University Press, Cambridge, UK, 1997), pp. 135–150.

16 J. Lillo, H. Moreira, and I. Vitini, “Locating Spanish basic colours in CIE

L*U*V* space: Lightness segregation, chroma differences, and
correspondence with English equivalent,” Perception 33, 48 (2004).

17 J. Sturges and T. W. A. Whitfield, “Salient features of Munsell colour
space as a function of monolexemic naming and response latencies,”
Vision Res. 37, 307 (1997).

Figure 5. A new set of color-name boundaries, adapted to fit our experimental results. �a� The initial bound-
aries for the model presented in Benavente et al.10 �b� The readjusted model. The results of the experiment are
superimposed on their corresponding plots.
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