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Abstract

A new multiresolution wavelet model is presented here, which accounts for brightness assimilation and contrast effects in a unified
framework, and includes known psychophysical and physiological attributes of the primate visual system (such as spatial frequency
channels, oriented receptive fields, contrast sensitivity function, contrast non-linearities, and a unified set of parameters). Like other
low-level models, such as the ODOG model [Blakeslee, B., & McCourt, M. E. (1999). A multiscale spatial filtering account of the white
effect, simultaneous brightness contrast and grating induction. Vision Research, 39, 4361–4377], this formulation reproduces visual effects
such as simultaneous contrast, the White effect, grating induction, the Todorović effect, Mach bands, the Chevreul effect and the Adel-
son–Logvinenko tile effects, but it also reproduces other previously unexplained effects such as the dungeon illusion, all using a single set
of parameters.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In visual perception, the term brightness often refers to a
non-quantitative perception of light elicited by the lumi-
nance of a visual target (see Gilchrist, 2006, p. 6). This
brightness depends not only on the light reaching the retina
from the visual target but also on the spatial distribution of
light on its surroundings. Brightness induction refers to this
change of appearance due to the surrounding light and its
effects are classified according to the perceptual direction of
the change. When the change in brightness of the visual
target goes away from the surrounding brightness, it is
called brightness contrast (Heinemann, 1955) and when
the change goes towards that of the surrounding bright-
ness, it is called brightness assimilation (Helson, 1963).

In the following section, we review several brightness
induction effects which are widely studied in the literature.
0042-6989/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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1.1. Brightness induction effects

One of the oldest known examples of brightness induc-
tion is the simultaneous brightness contrast (SBC) effect
(Heinemann, 1955; Wallach, 1948). This effect decreases
for increasing test field size, but is still strong for test fields
as large as 10 deg (Yund & Armington, 1975). Since this is
far larger than receptive fields of retinal and lateral genicu-
late nucleus (LGN) neurons in monkey (De Valois & De
Valois, 1988), it suggests that other types of neurons may
be involved in the process. Such neurons with small excit-
atory centres and large inhibitory surrounds (which may
be suited for the task of shifting brightness towards or
away from a large test field) were found in area V4 of the
primate visual cortex (Schein & Desimone, 1990; Spillmann
& Werner, 1996).

A second known example of brightness induction is the
so called grating induction (GI) effect (McCourt, 1982).
The perceived contrast of the induced grating again
decreases with increasing test field, but also decreases with
the spatial frequency (s.f.) of the inducing grating (Foley &

mailto:xotazu@cvc.uab.es


734 X. Otazu et al. / Vision Research 48 (2008) 733–751
McCourt, 1985). The induced grating is still perceived in
test patches as large as 6 deg (Blakeslee & McCourt,
1997). It has been argued that these two phenomena
(SBC and GI) are just manifestations of the same underly-
ing mechanisms (Blakeslee & McCourt, 1997) and their
physiological basis are related to the discovery of cortical
neurons in cat (Rossi, Rittenhouse, & Paradiso, 1996)
and monkey (Gilbert, Das, Ito, Kapadia, & Westheimer,
1996) that integrate over relatively large distances.

Another well known brightness effect is the White effect
(White, 1979), where grey test patches of the same lumi-
nance appear to have different brightness when placed on
top of the black and white bars of a square grating. Here,
the brightness shift is independent of the aspect ratio of the
test patch (i.e. it does not depend on the amount of white
or black border near or in contact with the test patch).
What makes this effect even more interesting is that the
contrast between the grey patch and its borders (or sur-
rounding area) seems to be less important than the contrast
with the bar upon which it is situated.

A similar effect was described by Todorović (1997)
where the brightness shift seems to be independent of the
amount of black or white background in contact with the
test patch. Several explanations both at the receptive-corti-
cal level and at higher perceptual levels have been
attempted to explain the White effect (see below). However,
it is clear that the most plausible explanation for this effect
at receptive level needs both elongated cortical filters
(Foley & McCourt, 1985; White, 1981) and the operation
of spatially extensive neuronal mechanisms, as opposed
to isotropic receptive fields and shorter range spatial inter-
actions such as those found in the retina.

Mach bands are brightness maxima and minima per-
ceived at the beginning and end of luminance gradients,
respectively (Mach, 1865). They have been interpreted in
terms of lateral inhibition of retinal ganglion cells (Gold-
stein, 2002) and more recently as a consequence of the
physical properties of real world luminance gradients
(Lotto, Williams, & Purves, 1999).

The Chevreul illusion (Chevreul, 1890) is the name given
to the brightness minima and maxima, respectively, per-
ceived at the foot and tip of each step in a luminance stair-
case. There have been attempts to explain this illusion in
terms of single channel and the contrast sensitivity function
(Cornsweet, 1970) but this explanation has been aban-
doned in favour of multi-channel models and local features
within the steps (Morrone, Burr, & Ross, 1994; Peromaa &
Laurinen, 2004). However, there are also alternative expla-
nations of this effect in terms of a filling-in process trig-
gered by edges at the different spatial scales (Pessoa,
Mingolla, & Neumann, 1995).

The Adelson tile illusion (Adelson, 1993), appears when
a ‘‘wall made from homogeneous blocks” is spatially mod-
ulated by a horizontal dark stripe in such a way that some
of the diamonds that form the top of the blocks fall within
the brighter part of the wave and some fall within the dar-
ker part. The top of the blocks (horizontal diamond
shapes) are constructed to be physically the same (i.e. they
reflect the same amounts of light), but the diamonds that
fall in the light strip look darker than the diamonds in
the dark strip. By rearranging the pattern to make the effect
disappear while keeping the local contrast around dia-
monds the same, Adelson (1993) demonstrated that expla-
nations need to incorporate long-ranging receptive field
interactions.

A modification of the Adelson tile illusion was intro-
duced by Logvinenko (1999), who blurred the contrast
edges of the horizontal strips, thus removing any apparent
transparency (and verifying that the illusion still holds).
There are a wide variety of explanations for these Adelson
illusions, ranging from ‘‘low-level” explanations based on
local contrast and multi-scale spatial filtering (Blakeslee
& McCourt, 1999; Cornsweet, 1970) to those based on
the role of borders or luminance junctions between or
across strips (Adelson, 1993; Adelson, 2000; Anderson,
1997), ‘‘high-level” explanations where the explanation is
based on how the visual system deals with illumination
(Gilchrist et al., 1999; Logvinenko & Ross, 2005) and
‘‘multi-level” explanations (Kingdom, 2003).

There are particularly striking cases where simple pre-
dictions from the SBC effect (black surroundings induce
lighter targets, etc.) seem to be completely reversed. One
example of these is the Necker cube presented by Agostini
and Galmonte (2002) whose dashed sides are perceived
lighter even when they are completely surrounded by white
background and vice versa. Other examples are the dun-
geon illusion (Bressan, 2001) and the Checkerboard con-
trast illusion (De Valois & De Valois, 1988), where grey
features surrounded by white look lighter and grey features
surrounded by white look darker. These were interpreted in
terms of higher level ‘‘grouping factors” where, for exam-
ple each set of dashes in the Necker cube is anchored by
the cube (Gilchrist, 2006).

In the following section, we review several attempts to
model brightness induction within a computational
framework.

1.2. Modelling attempts

Some of the most successful computational models of
brightness perception were developed using multi-scale
approaches to low-level vision. They postulate that edges
and lines are the driving features of early vision and a set
of operators (receptive fields) are in charge of detecting
these (du Buff, 1994; Fiorentini, Baumgartner, Magnussen,
Schiller, & Thomas, 1990; Morrone & Burr, 1988; Tol-
hurst, 1972). These models may differ in the way these
operators interact with each other. For example, both the
models of Tolhurst (1972) and Morrone and Burr (1988)
employ pairs of orthogonal operators but the former
applies mutual inhibition between them while the latter
pools their responses. The model of Fiorentini et al.
(1990) employs a single filter type at different spatial scales
while the model proposed by du Buff (1994) uses operators
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that resemble pairs of simple cells centred at the same loca-
tion but in quadrature.

A second type of model is based on the framework orig-
inally proposed by Marr (1982). An example of these is
MIRAGE (Watt & Morgan, 1985) which filters the stimuli
at various spatial scales and generates a list of ‘‘primitives”
and uses a set of rules to detect lines and edges. A more
sophisticated version was proposed by Kingdom and
Moulden (1992) and called MIDAAS, which includes a
gain control mechanism (light adaptation), spatial scale fil-
tering, thresholding and symbolic descriptions at each spa-
tial scale before applying a set of rules and combining the
outputs across scales.

A third type of model propose that the main task of the
visual system is not to extract salient features of scenes (as
do the other two types of models) but to build perceptual
representations that keep the geometric structure of scenes
(Pessoa et al., 1995). This model uses a contrast-driven and
a luminance-driven representation. The first representation
is then filtered to produce boundaries. The filtering over-
shoots and undershoots trapped by these boundaries are
filled-in before the contrast and luminance signals are
recombined to provide the model’s output, which is meant
to resemble the spatial distribution of the percept. These
models can account for several brightness induction effects
such as the Mach bands and the Chevreul illusion with
varying degrees of accuracy (for a review see Pessoa
et al., 1995 & Gilchrist, 2006).

A unified brightness model based on low-level isotropic
filters (difference of Gaussians or DOG) sensitive to con-
trast at multiple spatial scales was proposed by Blakeslee
and McCourt (1997) to explain the GI effect which, they
argue, cannot be explained by a fill-in type of model. The
main difference between this model and the previous ones
(Kingdom & Moulden, 1992; Moulden & Kingdom,
1991) was the presence of more s.f. filters (sensitive to lower
spatial frequencies) and a weighting scheme adjusted to
match the psychophysical data. This simple model is capa-
ble of accounting for other brightness effects such as SBC
and the Hermann grid illusion. A more sophisticated ver-
sion, which includes non-linearly pooled anisotropic filters
(oriented difference of Gaussians or ODOG) and a normal-
isation to equalise the global response at each orientation,
was developed to account for a variety of brightness effects
that require oriented filters such as the White effect (Blakes-
lee & McCourt, 1999; Blakeslee & McCourt, 2001; Blakes-
lee & McCourt, 2004; Blakeslee, Pasieka, & McCourt,
2005). The latest extension of ODOG was made by Robin-
son, Hammon, and de Sa (2007), who constrained normal-
isation to make it more neurally plausible and expanded
the range of illusions predicted by the model. Another mul-
tiresolution perceptual model is the one developed by
D’Zmura and Singer (1998) and D’Zmura and Singer
(1999). Here the visual space is decomposed into s.f. and
orientation axis, and subdivided into several regions
according to their spatial properties. The authors use four
(octave-wide) s.f. channels and six orientations of 30 deg
width. The contrast of the surround is introduced in this
model as a Gaussian blurring of the full-wave rectified fre-
quency channel (called spatial pooling of contrast).

The Brightness Induction Wavelet Model (BIWaM) we
present here shares some similarities with both the ODOG
and the D’Zmura and Singer (1998, 1999) models.
Although a multiresolution decomposition of the stimulus
is performed, the output of the s.f. channels is processed
differently (see below) and the contrast sensitivity function
and stimulus distance are introduced explicitly. In the
ODOG model the interaction of the central stimulus and
its surround is performed through a normalisation of the
total visual space (in the case of the D’Zmura model this
explicit comparison is not performed). In our model, we
introduced a precise dependency on the contrast energy
of the surround compared to the central stimulus. Another
crucial feature of our model is that for each of the illusion
simulations described below all parameters were held
constant.

2. The Brightness Induction Wavelet Model (BIWaM)

In this work, we propose a new low-level brightness
induction model (the BIWaM) that combines three impor-
tant stimulus features, namely spatial frequency, spatial
orientation and surround contrast to explain brightness
assimilation/contrast phenomena. This is done through a
multiresolution wavelet decomposition which separates
the achromatic input image into different spatial frequency
and orientation components (reminiscent of parvocellular
s.f. channels and cortical orientation-selective receptive
fields). The recovery of the perceptual brightness image is
done by weighting the wavelet coefficients using a modified
version of the contrast sensitivity function (CSF). This
modified CSF takes into account the (spatial) surround
information, so that the value of the contrast sensitivity
increases when surround contrast decreases and vice versa.
Observation distance is also taken into account to general-
ise the model.

The choice of the wavelet transform as the main frame-
work for this work was motivated by the fact that wavelets
share several mathematical properties that fit nicely with
those of the early visual system (e.g. two-dimensional
receptive field profiles are well described by two-dimen-
sional Gabor functions (Jones & Palmer, 1987)). Although
there is considerable variability in the receptive field shapes
across neurons (Tolhurst & Thompson, 1982; De Valois,
Albrecht, & Thorell, 1982) and no single basis set can cap-
ture this variability, wavelets provide basis functions that
are well localised (both in space and frequency) among
other mathematical properties (such as self-similarity, ease
of mathematical representation, etc.) which make them
popular among modellers (Field, 1999; Harvey & Doan,
1990; Olshausen & Field, 1997; Van Rullen & Thorpe,
2001; Zetzsche & Nuding, 2005).

We aim to produce the simplest mathematical for-
mulation (and to include the least possible number of
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free parameters) which models these three properties in
a manner compatible with current physiological and
psychophysical research with a unified set of
parameters.

Despite sharing many of its characteristics and philoso-
phy with other multiresolution models of the same type
(mainly with the ODOG and D’Zmura’s models), BIWaM
has some important differences from those, such as:

� It is based on a wavelet decomposition which allows a
full reconstruction of the original image (i.e. an invert-
ible transform) with basis that have a profile similar to
a Gabor function.
� It relates brightness induction to the CSF by weighting

each spatial scale (see next section).
� It accounts for the observation distance, which is not

explicitly defined in the other models (it predicts differ-
ent brightness induction effects depending on the obser-
ver’s physical position, which is the true behaviour of
the human visual system (HVS)). This issue was recogni-
sed as problematic by other authors (e.g. FLODOG
model, Robinson et al., 2007).
� It explicitly introduces the stimulus-surround contrast

energy. ODOG family models use a normalisation,
either global or local, and the D’Zmura’s model per-
forms a local gain control in order to modify the differ-
ent scales.
� Its parameters are fixed and account (simultaneously)

for all the results described below.

2.1. Contrast sensitivity function

The detection threshold for sinusoidal gratings depends
on the grating s.f. and this relationship is described by the
contrast sensitivity function CðmÞ, where m represents the
spatial frequency, which is band pass for achromatic stim-
uli (Mullen, 1985; Simpson & McFadden, 2005).

Experiments with square-wave periodic patterns have
shown that brightness assimilation effects increase when
the s.f. of the target feature is higher than a certain induc-
tion threshold. For brightness induction, this transition
point mthr was estimated to be near 4 cpd (Smith, Jin, &
Pokorny, 2001; Walker, 1978) and for chromatic contrast
induction between 4 and 6.7 cpd (Fach & Sharpe, 1986;
Mullen, 1985).

Given an observation distance d the psychophysical
CSF CðmÞ function can be defined in the scale space as a
function CdðsÞ, where s is the spatial scale, and approxi-
mated by a piecewise function defined by two Gaussians.
We can also define a particular scale sthr associated to
mthr, the spatial frequency (see Appendix A) where the
CSF peaks. A choice of mthr ¼ 4 cpd was made taking into
account the changes that occur to the retinal CSF with
mean field luminance (its peak varies between 1 cpd at
low luminance levels and 8 cpd for intense photopic back-
grounds) (Vannes & Bouman, 1967).
This allows us to define the function Cdð_sÞ, being
_s ¼ s� sthr.

The spatial decomposition of the visual stimuli into the
one octave-bandwidth independent channels that form the
basis of the CSF is modelled by a multiresolution wavelet
transform, as described in the next section.

2.2. Multiresolution wavelet analysis

A common approach to model the responses of visual
cortical areas involves the use of Gabor functions (Daug-
mann, 1980), which are good descriptions of the early
visual system’s receptive fields profiles but have the disad-
vantage of being non-invertible (i.e. the original image can-
not be fully recovered). Our wavelet basis functions (i.e. the
mother wavelet) are not strictly Gabor functions, but have
a similar profile (smooth, symmetric, and highly concen-
trated in both space and frequency). They are based on
an algorithm halfway between the Mallat decomposition
(Mallat, 1989; Mallat, 1998) and the à trous algorithm
(Holschneider, Kronland-Martinet, Morlet, & Tchamit-
chian, 1989; Otazu & Vanrell, 2006). We decided against
using a full Mallat decomposition (such as the Daubechies
wavelets, which are orthogonal and compact) mainly
because its basis functions are not smooth or symmetric
like the Gabor function. On the other side, the à trous algo-
rithm is a very flexible multiresolution wavelet (equivalent
to a bi-orthogonal wavelet decomposition) that allows us
to define smooth analysis filters that may lead to smooth
and symmetric wavelets. Furthermore, it does not require
us to define the synthesis filter, because the synthesis of
the original image is performed by simple addition. It has
also the advantage of being an undecimated algorithm
which, in contrast to decimated algorithms, allows us to
obtain a translation invariant decomposition. For the pres-
ent work, we used a decimated version of the à trous algo-
rithm in order to reduce the computational complexity of
the model (a common approach in computer vision appli-
cations, e.g. JPEG2000 image compression) and to simplify
future implementations. Despite these mathematical differ-
ences, the main concept and philosophy of the two algo-
rithms is the same.

BIWaM decomposes its input in a series of new images
xo

s (or wavelet planes) that contain features of the original
image at different spatial frequencies (indexed by s), and
spatial orientations (indexed by o). Our algorithm also
decomposes the image in 3 orientations with 45 deg orien-
tation bandwidths (i.e. vertical, horizontal and diagonal
orientations). In Fig. 1 we show a graphical scheme of this
decomposition. The terms xv

1;x
h
1 and xd

1 represent the
highest frequency components of the input image for the
vertical, horizontal and diagonal orientations, respectively.
The terms xv

2;x
h
2 and xd

2 represent similar orientation
wavelet planes of s.f. one octave lower. The c2 image is a
residual plane, which is a smoothed version of the original
image and can be similarly decomposed, as shown in
Fig. 1(b). After being decomposed, the original image I is
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Fig. 1. Multiresolution decomposition. Panel (a) the White effect image from Fig. 2(a) is decomposed into several wavelet planes x which contain features
of a certain s.f. and orientation. Panel (b) shows the representations of these planes (only 3 multiresolution levels are shown).
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represented as a summa of wavelet planes of different s.f.
and orientation as follows:

I ¼
Xn

s¼1

xv
s þ xh

s þ xd
s

� �
þ cn; ð1Þ

where n is the number of wavelet planes. The term cn is the
residual plane, which is a low resolution version of the ori-
ginal image. This expression can be written more com-
pactly as

I ¼
Xn

s¼1

X
o¼v;h;d

xo
s þ cn; ð2Þ

being the index o the several orientations vertical, horizon-
tal and diagonal, i.e. o ¼ v; h; d.

The s.f. channels (or wavelet planes) of our model have a
bandwidth and layout similar to the visual system channels
that determine the shape of CðmÞ.
a b
2.3. Assumptions

As mentioned before, there is ample evidence that the
perception of a central stimulus can be modified by the spa-
tial content of the surroundings (Chubb, Sperling, & Solo-
mon, 1989; D’Zmura & Singer, 1998, 1999; Heeger, 1992;
De Valois et al., 1982; Werner, 2003; Yu, Klein, & Levi,
2001; Yu, Klein, & Levi, 2002). In this section we describe
how the centre–surround interaction of the three main
stimulus properties: spatial frequency, spatial orientation
and contrast was modelled.
Fig. 2. (a) Example of the influence of surround spatial frequency. Grey
patches have different brightness because of their different local spatial
information content. Both grey patches and vertical stripes have the same
width (i.e. horizontal size or spatial scale) and this produces a strong
induction effect. (b) When the widths of the grey patches are different to
that of the black and white stripes, the brightness induction effect is largely
reduced.
2.3.1. Stimulus-surround relative spatial frequency

The spatial frequency content of the surroundings is one
of the main contributors to the perceived brightness
changes in a central stimulus. As shown by grating percep-
tion studies (Chubb et al., 1989; D’Zmura & Singer, 1998,
1999; Werner, 2003; Yu et al., 2001, 2002), when the spatial
frequencies of both central and surround stimulus are
similar, brightness contrast of the central stimulus is
reduced (brightness assimilation) and when these frequen-
cies are different the central stimulus contrast is enhanced
(brightness contrast). Therefore, brightness assimilation is
only performed when both central and surround stimuli
have similar spatial frequencies within a frequency range
of about an octave (Blakemore & Campbell, 1969;
D’Zmura & Singer, 1998, 1999; Graham & Nachmias,
1971; De Valois et al., 1982; Werner, 2003; Wilson, McFar-
lane, & Phillips, 1983; Yu et al., 2001, 2002). Panel (a) in
Fig. 2 shows this property. In this figure, the grey patches
have the same horizontal s.f. as the surrounding black and
white stripes. The left patch is perceived darker because of
the induced brightness assimilation with the contiguous
dark vertical stripes, and similarly for the right grey patch
among contiguous white stripes which is perceived
brighter. Panel (b) shows how doubling the s.f. of the grey
patches (i.e. one octave difference with the background),
weakens the effect. Considering this, we modify the CSF
according to the first of the three assumptions of our
model:
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Assumption 1. Brightness assimilation is only performed
when both central and surround stimuli have similar
spatial frequencies within a frequency range of about one
octave.

The multiresolution wavelet framework allows us to
decompose the visual stimulus into one octave-bandwidth
spatial frequency components and estimate the influence
of every spatial feature on features of the same spatial
scale. The wavelet scales s here are related to the s.f. chan-
nels that constitute the Cdð_sÞ (observer-target distance is
included in this CSF, see definition above).

2.3.2. Stimulus-surround relative spatial orientation

Another important contribution to brightness assimi-
lation in gratings comes from the relative orientation of
central and surround stimulus. Several studies (Cannon
& Fullenkamp, 1991; Solomon, Sperling, & Chubb,
1993; Yu et al., 2001, 2002; Yu, Klein, & Levi,
2003) show that brightness assimilation of a central
stimulus is strongest when this and the surround stim-
ulus have identical orientations. On the contrary, when
the relative spatial orientations are orthogonal, bright-
ness assimilation of the central stimulus is weakest
(brightness contrast is strongest). This effect can be
observed in Fig. 3. Following this, we define our sec-
ond assumption:

Assumption 2. Brightness assimilation is strongest when
the central stimulus and the surround stimulus have
identical orientations. Furthermore, when the relative
spatial orientations are orthogonal, brightness assimilation
of the central stimulus is weakest (brightness contrast is
strongest).

This assumption was implemented by weighting and
pooling the different orientation components of the wavelet
transform, e.g. xh

s ;x
v
s;x

d
s .

2.3.3. Stimulus-surround relative contrast energy

Surround contrast is the third contribution to brightness
induction considered by our model. It has been shown that
the contrast of the surround stimuli plays an important role
a b

Fig. 3. The vertical grey stripe (a) is perceived darker than the horizontal
grey stripe (b) because of brightness assimilation with its surrounding
vertical black and white stripes (i.e. classical White effect). If the grey patch
is orthogonal (i.e. at 90 deg) to the black and white stripes, brightness
assimilation does not occur.
in brightness assimilation effects (Cannon & Fullenkamp,
1991; Chubb et al., 1989; Ejima & Takahashi, 1985; Ellem-
berg, Wilkinson, Wilson, & Arsenault, 1998; Klein, Stro-
meyer, & Ganz, 1974; MacKay, 1973; Nachmias &
Sansbury, 1974; Yu et al., 2001, 2002, 2003). Brightness
assimilation in a central test stimulus increases as its sur-
round contrast increases (and vice versa), before reaching
a saturation state. This effect can be observed in Fig. 4
where the two vertical grey lines are placed in backgrounds
with different contrast. The left grey line is always in con-
tact with dark stripes, and right grey line is always in con-
tact with white stripes. When the surrounding luminance is
uniform (i.e. surround contrast is null), brightness contrast
is induced in the lines with the left line being perceived
brighter and the right line darker (simultaneous contrast).
When the contrast of the surrounding vertical stripes
increases (downwards direction in Fig. 4) our perception
of the grey stripes changes, clearly reversing their previ-
ously perceived difference when the contrast of the sur-
rounding bars is maximum, i.e. when they are black and
white. This way, we define the third assumption of our
method as:
Fig. 4. In this series of images, the surround contrast of the two vertical
grey lines is increased downwards in four steps. The left grey line is in
contact with black stripes, and the right grey line is in contact with white
stripes. As the line extends downwards (and surround contrast increases)
brightness induction increases, i.e. the left grey line becomes darker and
the right grey line becomes brighter.



X. Otazu et al. / Vision Research 48 (2008) 733–751 739
Assumption 3. When the brightness contrast of the sur-
round features increases, brightness assimilation increases
(i.e. brightness contrast decreases) and vice versa.

To translate this assumption to the model we will need
to add the contribution of the surround contrast. The next
section shows how we do this.

2.4. Recovery of the ‘‘perceived” image

All the assumptions mentioned above are implemented
in our model by modifying the wavelet coefficients in Eq.
(2), where the goal was reconstructing the perceived or
induced image from the decomposed original image. This
weighting function attempts to emulate some perceptual
properties. As a first approximation, we assume it has a
shape similar to the CSF, such as:

Ipercep ¼
Xn

s¼1

X
o¼v;h;d

Co
dð_sÞ � xo

s

� �
þ cn: ð3Þ

being Ipercep the recovered perceptual image, and indexes s

and o represent the multiple spatial frequency and orienta-
tion planes.

As seen before, the relative s.f. and orientation between
central and surround stimulus are important contributors
to brightness induction. In the multiresolution framework,
image components are grouped by both their s.f. and orien-
tation, giving us a representation in which similar features
are grouped into the same data set (i.e. wavelet plane). In
this way, Assumption 1 and Assumption 2 are naturally
implemented within this framework.

On the other hand, Assumption 3 introduces the con-
cept of surround contrast. Since the coefficients at spatial
scale s and orientation o of the wavelet decomposition rep-
resent the variation of these image features at a certain
scale and orientation around a mean value, the measured
energy of these coefficients is related to the contrast energy
of the corresponding feature. Therefore, we can easily esti-
mate the relative contrast of a central feature compared to
the contrast of its surround features by defining
r ¼ r2

cen=r
2
sur, being r2

cen and r2
sur the standard deviation of

the wavelet coefficients on two concentric annuli that rep-
resent a centre–surround interaction around each point
(x,y). The regions determined by these annuli (referred as
U and W, respectively) were modelled as squares of 5 � 5
and 13 � 13 points wide, enclosing NU and NW points
inside, respectively. Region U was chosen to be 5 � 5
points wide in order to include 2 complete Nyquist periods
ðT sÞ, when measuring the variation of the central region
dsðx; yÞ, therefore, NU ¼ 25. Its surrounding region W is
13 � 13 points wide, that is about three times larger than
the inner region, an approximate ratio suggested by Spitzer
and Semo (2002) and Shapley and Enroth-Cugell (1984)
and psychophysically measured by Yu et al. (2001).
Although the surround region W is centred in the same
point, it does not overlap with the inner region U (it
includes only NW ¼ 144 points).
A study by Nachmias and Sansbury (1974) on how con-
trast masking varied with mask contrast suggested the pres-
ence of contrast non-linearities in visual s.f. channels.
These contrast non-linearities were modelled with a func-
tion similar to the Naka and Rushton (1966) function
(which was also successful in reproducing the responses
of cortical V1 neurons (Albrecht & Hamilton, 1982; Sclar,
Maunsell, & Lennie, 1990; Tolhurst & Heeger, 1997)).
Since we are attempting to model the influence of sur-
rounding image features on the perception of a central
stimulus (in ways that are related to grating contrast mask-
ing) we defined a similar non-linearity which provides an
acceleration at sub-threshold contrast levels and a com-
pression at supra-threshold:

zctr ¼
r2

1þ r2
; ð4Þ

where zctr is non-linear and fulfils 0 6 zctrðx; y; s; oÞ 6 1. The
previous expression can be seen as a non-linearisation of
the r variable.

As seen in the previous section, local contrast of a cen-
tral test feature decreases as the contrast of its surround
features increases and vice versa (see Fig. 4). Since r is an
estimation of the central feature contrast relative to its sur-
round contrast, zctr in Eq. (4) it can be interpreted as a non-
linear estimation of the degree of brightness contrast
induced by the surround contrast into a central feature.

To introduce the effect of surround contrast features
into the Cdð_sÞ we use the variable zctrðx; y; s; oÞ where s rep-
resents the s.f. and o is the orientation involved. A new
CSF C0 can be written as follows:

C0ð_s; zctrÞ ¼ zctr � Cdð_sÞ þ Cminð_sÞ: ð5Þ

In this expression, C0ð_s; zctrÞ reaches its minimum when
zctr ¼ 0 (i.e. minimum brightness contrast or maximum
brightness assimilation). To avoid C0ð_s; zctrÞ becoming null
for some spatial frequencies s (mainly for low spatial fre-
quencies—see Fig. 5) we have introduced the term Cminð_sÞ
in Eq. (5), defining

Cdð_sÞ ¼
exp � s2

2r2
1

n o
; _s � _s� sthr 6 0;

exp � s2

2r2
2

n o
; _s � _s� sthr > 0:

8><
>: ð6Þ

where parameters r1 and r2 are the standard deviation of
the piecewise Gaussian function for s 6 sthr and sthr < s,
respectively. To reproduce the approximate profile of the
psychophysical CðsÞ functions obtained from the literature
(Mullen, 1985), we made r2 ¼ 2r1 and r1 ¼ 2. We defined
Cminð_sÞ as

Cminð_sÞ ¼
1
2

exp � s2

2r2
1

n o
; _s � _s� sthr 6 0:

1
2
; _s � _s� sthr > 0

8<
: : ð7Þ

In this way, C0ð_s; zctrÞ tends to Cminð_sÞ when zctr tends to 0.
This avoids a high degree of assimilation being performed
at low s.f. (i.e. large scale features), which would make
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them invisible. We show this function Cdð_sÞ in Fig. 5. In the
opposite situation, C0ð_s; zctrÞ is maximum when zctr ¼ 1.
Spitzer and Semo (2002) estimate that the maximum
enhancement factor, i.e. maximum perceived brightness
contrast, is around 1.5. It is the peak value of C0ð_s; zctrÞ
(see Fig. 5).

Another important property of the C0ð_s; zctrÞ is that it
reproduces the dip function for grating adaptation and
masking effects. A wavelet basis is usually represented in
the s.f. plane by a Heinsenberg box with certain bandwidth
in both space and frequency. The function that defines the
spread’s influence is defined by averaging the Wigner–Wille
distribution (Mallat, 1998, Chapter 4), which can itself be
approximated by a Gaussian function. In order to show
what is the effect on the continuous C0ð�Þ function when
weighting down an individual wavelet coefficient from a
particular discrete scale, we multiplied a Gaussian function
with one octave frequency bandwidth by this weight (see
dashed line in Fig. 5). To construct this function we defined
a certain observation distance d and obtained the corre-
sponding sthr value (see Appendix A). Following this, we
found the particular wavelet plane s that fulfils
ð_s ¼ sthr � s ¼ �1Þ. The dashed line in Fig. 5 shows how
the C0ð�Þ is modified when we force zctr < 1 for a certain fea-
ture belonging to this particular wavelet plane. The result-
ing plot is very similar to the dip function obtained by
Graham and Nachmias (1971) and Nachmias and Sans-
bury (1974) for grating adaptation and masking effects,
using a mathematical expression qualitatively equivalent
the ours (Eq. (4)).

Eq. (3) shows the general expression to recover a percep-
tual image Ipercep represented by a set of wavelet planes xo

s .
Replacing the set of weights a by our own weighted CSF C0

aðs; �Þ � C0ð_s; zctrð�ÞÞ: ð8Þ
We obtain

Ipercepðx; yÞ ¼
Xn

s¼1

X
o¼v;h;d

C0ð_s; zctrðx; y; s; oÞÞ � xo
s ðx; yÞ

þ cnðx; yÞ ð9Þ

which defines the perceptual image recovered from the
wavelet components of the original image.

3. Model predictions

This section shows the model’s predictions (both quan-
titatively and qualitatively) for the brightness induction
effects mentioned in Section 1 (e.g. the simultaneous bright-
ness contrast (SBC), the White effect (W), the grating
induction (GI), the Todorović effect (T), the Mach bands
(MB), the Chevreul effect (C), the Adelson–Logvinenko
tile, the dungeon illusion and the checkerboard illusion).

To be able to compare BIWaM predictions to psycho-
physical data, we adjusted the input image and the observ-
ers distance parameter to be consistent with the physical
dimensions (size, visual angle, observation distance, etc.)
reported by the experimenters for their actual stimuli.
For the SBC, GI, W and T effects, we compared our model
to published psychophysical results (Blakeslee & McCourt,
1999) supplied by McCourt. For the MB and the C effect
we obtained data from Lu and Sperling (1996) (Table 2).

3.1. SBC and White effect

Panels (a) and (c) in Fig. 6 show two versions of the SBC
effect. The grey rectangle is seen darker when it is in front
of a bright background, and brighter when it is in front of a
dark background. For this example, we used the same stim-
ulus geometry and observation distance as Blakeslee and
McCourt (1999), and obtained a value of sthr ¼ 2:65 for
our model.

The continuous line in Fig. 6 (panels (b) and (d)) shows
the luminance profile of the central row from panels (a) and
(c) which contains the grey patch surrounded by the light/
dark uniform background. The dashed lines in the plots
show the perceptual profile predicted by our model. We
see that the BIWaM predicts the increase/decrease of the
perceived brightness of this grey patch over its original
value. The operation of the BIWaM can be summarised
as follows. Consider the grey patch at the left of panel
(a), which is relatively well represented in the wavelet plane
that best corresponds to its s.f. and orientation. Since the
grey patch is not surrounded by similar features (or it
may be said that is surrounded by similar features with zero
contrast), brightness contrast is induced at this particular
spatial scale. Given that the grey square is darker than its
local surround, it becomes even darker (perceptually).
The same reasoning can be applied to the other grey patch
upon the darker background, which becomes perceptually
lighter (and the bottom panels in Fig. 6). The model also
predicts a local maxima and minima running parallel to
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Fig. 6. Panels (a) and (c) show an example of the simultaneous contrast effect and panels (b) and (d) show our model’s results. The solid lines in the plots
on the right show the profile of the central row taken from the corresponding left panel. The dashed lines show our model’s predicted brightness profile
(darker left grey patch and a brighter right grey patch).
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the vertical light/dark edge at the centre of figures (a) and
(c), i.e. around column 500. In this image, this crisping

effect is not perceived by the observer. This edge and the
two black and white plateaus are defined by several spatial
frequency components. The BIWaM considers some of
these frequency components (mainly the highest s.f.), as
isolated features of a given spatial frequency, i.e. brightness
contrast is induced. It implies that different weighting fac-
tors have been applied to the different spatial frequency
components that define both the edge and the plateaus,
thus the final brightness profile predicted by the BIWaM
in this edge is not psychophysically perceived by the obser-
ver. In some cases, this crisping effect can be perceived by
the observer. For example, on the edge between the wide
white rectangle and the grey background, we perceive a
darker zone where the grey background is closer to the
white patch, and similarly we perceive a brighter zone
where the grey background is closer to the dark rectangle.

Another extensively studied effect (shown in Fig. 7 pan-
els (a) and (c), where the left grey rectangle is perceptually
brighter than the right one in panel (a) and darker in panel
(c)) is the White effect. This effect is generally considered a
particular case of SBC (Moulden & Kingdom, 1991; Zaidi,
1989) and can be explained using spatially-oriented filters
(Blakeslee & McCourt, 1999; Blakeslee et al., 2005).

It has been suggested (Blakeslee et al., 2005) that the
White effect is not an assimilation effect because the direc-
tion of brightness change is kept, even when the height of
the test patch is reduced so that it has more border contact
with the bar on which it is situated. In our formulation, the
White effect can be modelled as a spatially-oriented bright-
ness assimilation.

The continuous lines in Fig. 7 (panels (b) and (d)) show
the luminance profile of a row from panels (a) and (c),
respectively, containing the grey patches. The dashed line
in the same figure shows the perceptual profile predicted
by the BIWaM. We see that our method correctly predicts
that left grey patches are perceived darker and right
patches brighter.

As a comparison, we have added in Fig. 7 the psycho-
physical brightness values obtained by Blakeslee and
McCourt (1999) for the same image. We can see that the
brightness predicted by the present method fits the psycho-
physical data well.
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Fig. 7. Panels (a) and (c) show an example of the White effect, where the grey bars are equal but perceived with different brightness because of their
different surrounds. Panels (b) and (d) show the profile of a row from (a) and (c), respectively, containing the grey patches. The dashed lines are the model’s
predictions, showing a perceptual brightness increase of the left grey patch and a decrease on the right patch. Similarly, perception of the vertical stripes is
modified (i.e. brightness increase of white vertical stripes and brightness decrease of black vertical stripes). The same effects can be observed in panels (c)
and (d).
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Our model reproduces the White effect in a similar way.
Consider for example, the patch on the right side of panel
(a) (i.e. the one in front of white vertical stripes and in lat-
eral contact with dark vertical stripes). There is a wavelet
plane where this patch is well represented given its particu-
lar s.f. and orientation. This is the same wavelet plane
where the background grating is also best represented,
since it shares the same horizontal s.f. Since here the sur-
round contrast is greater than the local contrast, brightness
assimilation is induced on the grey patch (it becomes per-
ceptually darker). On wavelet planes corresponding to dif-
ferent orientations (e.g. vertical) the opposite interaction
may occur, since at these orientations the background is
not best represented in the same wavelet plane as the grey
patch. As a result, horizontal features induce brightness
assimilation and vertical features induce brightness con-
trast. The total perceived brightness is a combination of
these orientation-dependent interactions.

Fig. 7 (panels (b) and (d)) also shows that the model’s
prediction for bright vertical stripes is brighter that the ori-
ginal value and similarly, the prediction for dark vertical
stripes is darker. The reason for this may be the brightness
contrast induced by the surrounding (low s.f.) plain grey
background on the vertical stripes. Fig. 8 illustrates this
effect, where the original images (grey background) are rep-
resented on the left while a version of the same images on
black background is on the right. The presence of a black
background induces a brightness contrast effect on the ver-
tical stripes, making the perceived light bars lighter and the
perceived dark bars darker.

3.2. Grating induction

Grating induction (GI) (McCourt, 1982) produces a per-
ceived brightness variation (a grating) on an spatially
extended test field, see Fig. 9(a). The central thin horizontal
test patch has constant luminance, but its brightness is per-
ceived as an horizontal sinusoidal in counterphase with the
upper and lower sinusoidal extended patches. As shown by
Blakeslee and McCourt (1997) (who modelled it with their



Fig. 8. Influence of a dark background on the White effect. Images (b) and (d) are the same as (a) and (c) but surrounded by a dark background. The
perceived brightness of vertical dark stripes in dark background surroundings is different than in the case of the grey background.
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ODOG model), this effect may be interpreted as a particu-
lar case of brightness contrast.

Fig. 9(b) shows the profile of the central row of both the
uniform brightness of the central thin horizontal patch, the
brightness profile predicted by our method and a row of
the extended sinusoidal luminance grating. As we can see,
the perceived brightness of the central grey stripe is pre-
dicted as a sinusoidal brightness profile in counterphase
with the extended patches. Panels (c) and (d) show a similar
example for a lower s.f. sinusoidal patch.

In the GI example, the situation is similar to the simul-
taneous contrast: since the horizontal grey patch is orthog-
onal to the grating, it is not well represented in the same
vertically-oriented wavelets planes as the grating and there-
fore a contrast effect is induced. The overall result is a sinu-
soidal brightness grating in counterphase with the
sinusoidal luminance grating.

3.3. Todorović effect

In Fig. 10, panel (a) we show a version of the Todorović
effect (Todorović, 1997). This image is the same as in Fig. 6
panel (c), except for the superimposed black and white
squares which make the grey patches take the form of a
cross (bordered by equal amounts of black and white).
The test patch on the black background appears brighter
than the test patch on the white background despite the
fact that both patches have the same amount of black
and white border contact.
In Fig. 10, panel (b) we show the brightness predicted by
our model. It correctly predicts that the grey patch on the
white background is perceived darker than the grey patch
on the black background. In this example, the grey patches
do not share features with the rest of the figure within the
same orientation and spatial-scale wavelet planes, and
therefore brightness contrast is induced. All other squares
do share some similarities and therefore have a tendency
to be assimilated.

3.4. Mach bands

In the Mach bands effect (Mach, 1865), see Fig. 11(a),
bright and dark bands are perceived near the brighter
and darker border, respectively, of a ramp edge between
two uniform regions of different luminance.

Panel (a) in Fig. 11 shows two plateaus of different
luminance with a wedge between them. A brighter verti-
cal cusp is perceived where the wedge meets the brighter
plateau and a darker vertical cusp is perceived where the
wedge meets the dark plateau. Our model correctly pre-
dicts this behaviour, as shown in panel (b). The same
panel also shows the luminance profile for the central
row of both the original image and the perceptual bright-
ness predicted by our method. The Mach bands are
reproduced at the region between the central wedge
and the lateral plateaus.

In this case the s.f. features defined by the edges of the
wedge and the two plateaus will be prominent in a partic-
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Fig. 9. Panel (a) in the GI effect, the thin horizontal stripe with constant luminance between the horizontal sinusoidal gratings is perceived as a sinusoidal
brightness stripe in counterphase with the grating. Panel (b) profile of a row of panel (a) showing the constant luminance of the horizontal stripe
(continuous line) and the brightness predicted by our method (dashed function) in counterphase with a row of the horizontal sinusoidal luminance grating
(dotted function). A similar effect is shown in panels (c) and (d).
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Fig. 10. Panel (a) in the Todorović effect (Todorović, 1997) the left grey patch is perceived darker that right one, even when they have the same amount of
border contact with black and white surfaces. Panel (b) predicted brightness from our model.
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ular group of wavelet planes of the optimal spatial scale
and orientation. There will be no other such prominent fea-
ture in the same wavelet planes and this will determine a
brightness contrast induction, producing the cusps.
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Fig. 11. Panel (a) example of the Mach bands effect. Panel (b) original data luminance (solid lines) and perceptual brightness predicted by our model
(dashed line).
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3.5. Chevreul effect

In the Chevreul effect (see Fig. 12), a series of stripes
with staircase profile is perceived as a sawtooth, that is,
each stripe is perceived with a brightness increasing regu-
larly from one stripe to the next. This effect has been mod-
elled with various accuracy levels (Keil, 2006; Morrone &
Burr, 1988; Morrone et al., 1994; McArthur & Moulden,
1999).
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Fig. 12. Panel (a) example of the Chevreul effect. The original image has a
luminance staircase profile, but it is perceived with a sawtooth profile.
Panel (b) shows the original data values and the perceptual brightness
predicted by our model.
In Fig. 12, panel (b) we show the original staircase pro-
file (continuous function) and the brightness predicted by
our method (dashed function), which follows an approxi-
mately sawtooth profile.

The luminance step between two patches is outlined by
several s.f. components (mainly high s.f. components) that
will feature highly in a group of wavelet planes of the opti-
mal spatial scale and horizontal orientation. Since at these
particularly high spatial frequencies they are not sur-
rounded by similar components (the size of the steps make
interactions between edges weak), brightness contrast is
induced in the edges, leading to the final sawtooth profile.
3.6. Adelson–Logvinenko tile

In Fig. 13, panel (a) we show a version of the Adelson–
Logvinenko tile pattern (Logvinenko, 1999). This image
consists of a 2D representation of several 3D cubes modu-
lated by a horizontal sinusoidal grating, where the upper
(or lower, depending on how the observer solves the cube’s
ambiguity) sides of the cubes have equal luminance but are
perceived with different brightness. The grey level value of
these top surfaces is 134. Our method predicts a grey level
value of 134 for the apparently light surfaces and 99 for the
apparently dark ones.

The presence of the vertical (low s.f.) modulating sinu-
soidal grating means that there will be a particular verti-
cally-oriented wavelet plane where this feature will be
represented best with very little influence of the rest of
the image. This will induce a strong brightness contrast
effect in the rows that are coincident with the peaks and
valleys of this sinusoidal (precisely where the tops of the
cubes are located), therefore producing the final perceived
effect.
3.7. Dungeon illusion

There is a subset of illusions where the direction of con-
trast does not fit the one predicted by traditional contrast
theories (Gilchrist, 2006). One of these is the dungeon illu-



Fig. 13. Panel (a) example of the Adelson–Logvinenko tile. The parts of
the cubes at the crests and valleys of the modulating sinusoidal have all the
same luminance but are perceived differently. The model we present
qualitatively predicts these differences (see text).
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sion (Fig. 14, Bressan, 2001) where the perceived difference
between the grey squares on the left and the right of the
picture is the opposite of what one would predict from
analysis of individual squares and their immediate sur-
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Fig. 14. Panel (a) shows an example of the dungeon effect. Individual grey
squares on the left side are completely surrounded by black pixels and
should be seen lighter than individual grey squares on the right side, which
are in turn surrounded by white pixels, in practice the opposite occurs.
Panel (b) shows our model’s predictions for the central row of the figure in
panel (a), demonstrating the power of a multiresolution wavelet approach
to provide a qualitative explanation of the effect.
roundings (Gilchrist, 2006). Panel (a) in Fig. 14 shows an
example of the dungeon illusion and panel (b) shows the
brightness predicted by our model for the central row,
where all grey rectangles on the left side are represented
with a darker shade of grey than those on the right side
of the image. This effect can be qualitatively explained by
the fact that all grey rectangles are surrounded by other
rectangles of the same size and at a distance similar to its
size, both vertically, horizontally and diagonally. There-
fore, they will be strongly represented in the same wavelet
planes, leading to a brightness assimilation effect. This in
turn will produce darker rectangles in the left side of the
image (where the rectangles’ brightness will tend towards
that of the bars) and slightly brighter rectangles on the
right side.

3.8. Checkerboard

Another example of a complete reversal of contrast is
the checkerboard illusion (shown in panel (a) of Fig. 15).
Here, the grey square in contact with white squares is per-
ceived brighter than the grey square in contact with the
black squares (an effect similar to the dungeon illusion).
A simplified explanation can be given in terms of the fea-
tures that surround each of the squares, since the grey
squares are horizontally and vertically surrounded by ele-
ments of equal size and high contrast, they will again be
represented in the same spatial scales and orientations
wavelet planes which will induce brightness assimilation
on them. If the square is surrounded by black squares (left),
its brightness will tend to go in the direction of the local
surroundings (darker). The other grey square will be assim-
ilated towards the other end (it will look brighter).

4. Discussion: Comparison with psychophysics

To make a more quantitative assessment of our model’s
predictions, we tested our model against psychophysical
measures from the literature of the relative brightness
increase/decrease produced by brightness induction. We
simulated the physical conditions (image size and obser-
ver’s distance) in our model and produced a set of predic-
tions that were compared to the measurements. All other
parameters were kept the same for all conditions. Figs.
16 and 17 show the psychophysically-measured values pub-
lished by Blakeslee and McCourt (1999) and our predicted
values for some of the visual effects described above (e.g.
simultaneous brightness contrast, grating induction, White
effect and Todorović effect).

In Fig. 16, experimental values (and their associated
95% confidence limit error bars) are represented by bars.
Our predicted values are represented by squares (empty
squares for test patches on dark background, and solid
squares for test patches on bright background). The ordi-
nate axis shows the difference between the matching lumi-
nance and the mean luminance expressed as a proportion
of the mean luminance, consistent with Blakeslee and
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Fig. 15. Panel (a) shows an example of the checkerboard contrast effect.
The image shows two grey squares (of the same luminance) embedded in a
checkerboard, that are perceived differently by the observer. The right
square is perceived brighter than the left one. Panel (b) shows the real and
perceptual brightness profiles of these two squares as predicted by our
model.
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Fig. 17. Representation of the values predicted by our model (abcissa
axis) and the psychophysical values obtained by Blakeslee and McCourt
(1999) (ordinate axis) for all the visual effects considered in Fig. 16.
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McCourt (1999). The 0.0 value represents the luminance of
the test patches. We can see that our method approxi-
mately predicts the direction and magnitude of the bright-
ness induction. The greatest deviation from the
psychophysical values is for the GI3 (our model underesti-
mates the effect) and W2 (our model overestimates the
effect) results. It is possible to obtain better fits by adding
more degrees of freedom (e.g. modifying the CSF C0 to
adjust for these two sets of results) to our model, but for
the sake of consistency and simplicity, we prefer to keep
the lowest number of degrees of freedom (and the simplest
mathematical expression) in all cases.

In Fig. 17 we show a plot of the values predicted by our
model (abscissa) versus the psychophysical values (ordi-
nate) for all considered visual effects. Each point in the plot
represents an observer (either MM or BB) from Blakeslee
and McCourt (1999). We also show the diagonal line
(dotted line) where all points would lie should our model’s
predictions be 100% accurate. The points show an approx-
imately linear behaviour. The solid line represents the best
fitting line (linear regression) with a slope of around 0.9, a
correlation coefficient r ¼ 0:87, and the sum of squares of
the residuals being 0.077.

We also used psychophysical data by Lu and Sperling
(1996) in order to analyse the predictions of our model
for the Mach bands and the Chevreul effect. As with the
previous examples, we simulated in our model the physical
conditions of Lu and Sperling (1996). In the case of the
Mach bands effect, these authors report a brightness incre-
ment/decrement (in the bright and dark plateau, respec-
tively) which is around 8% of the luminance difference
between the bright and the dark plateau. Our model also
predicts a brightness increment around 13%. For the Chev-
reul effect, these authors report an increment/decrement of
the brightness around 54% of the luminance difference
between consecutive steps. Our model predicts an
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increment/decrement around 17%, which differs from the
observed value.

Plots in Figs. 16 and 17 (comparison with psycho-
physical data) show that despite its simplicity, our wave-
let model is capable of predicting both the direction and
magnitude (except for the Chevreul effect) of the psycho-
physical data. The analysis presented in the previous sec-
tion also shows a qualitative agreement between the
model’s prediction and the spatial distribution of the
brightness changes of the observed phenomena. It is also
worth pointing out that a simple explanation based on
common features in terms of spatial scale, spatial orien-
tation and surround contrast provides guidelines as to
how to interpret these effects.

However, BIWaM has been unable to reproduce some
other brightness induction effects, such as the Werthei-
mer–Benary cross (Benary, 1924) (our method cannot pre-
dict different brightness values for the two grey triangles)
and the shadow-incompatible luminance gradient (Log-
vinenko, 2003) (where the BIWaM predicts different
brightness values for the equally perceived test patches).
Another brightness induction effect that our model cannot
reproduce is the glare effect (Zavagno, 1999; Zavagno &
Caputo, 2001; Zavagno & Caputo, 2005) (a white patch
is perceived lighter when surrounded by a smooth lumi-
nance profile).

Since the performance of our model when considering
these effects (and many others) has not been included in
Fig. 17, we acknowledge our model’s ‘‘goodness” criteria
is biased and BIWaM can provide only a partial explana-
tion to whole range of brightness induction effects studied
in the literature. Even more, our model is far better at
explaining Hering’s type of simultaneous brightness con-
trast effects than it is at explaining Helmoltz’s (see (Log-
vinenko & Kane, 2004) for a review and classification of
these effects).

5. Conclusions

Our simplistic model of visual brightness induction is
based on three main features of visual scenes: spatial
scale, spatial orientation and surround contrast. We
selected these not only because there is evidence that they
are highly relevant to brightness perception phenomena,
but also because there is evidence (both psychophysical
and physiological) that these attributes are processed in
parallel by pre-cortical and cortical semi-independent
channels. In our framework, we assume that brightness
induction is performed mostly between features of similar
s.f. and spatial orientation (i.e. within the same wavelet
plane) and the effect is also dependent on the contrast
of surround features compared to the central test feature
for each spatial scale and orientation. The model also
makes use of a psychophysically determined contrast sen-
sitivity function and explicitly includes the observation
distance to be able to relate the different spatial scales
(wavelet planes) to the actual world. This simple set of
assumptions allow the unification of brightness assimila-
tion and brightness contrast in a single mathematical
framework, and to reproduce (qualitatively in all cases,
quantitatively in some) several known brightness induc-
tion effects, e.g. simultaneous brightness contrast, White
effect, grating induction, Todorović effect, Mach bands,
Chevreul effect, Adelson–Logvinenko tile, dungeon illu-
sion and checkerboard illusion, which were not previously
explained by a single (unified) framework, using a unique
set of parameters.

Our most important contribution is to show that many
brightness induction effects can be modelled and repro-
duced using only three assumptions (described in Section
2.3). A secondary contribution is the incorporation of
Assumption 3, which states that when the brightness con-
trast of the surround features increases, brightness assimi-
lation increases, i.e. brightness contrast decreases, and
vice versa. This assumption is the key point which allows,
using a single unified mathematical formulation, the model
to perform either brightness assimilation or brightness con-
trast depending on the centre/surround spatial brightness
distribution and the observers distance to the stimuli. A
final contribution is to produce a model which can simulta-
neously reproduce brightness induction effects without the
need to adjust its parameters for each particular case, in a
manner consistent with the behaviour of the human visual
system.

The extension of this model into colour opponent space
is straightforward and so far it has proven capable of
reproducing some chromatic induction effects.
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Appendix A. Induction threshold sthr

Let d be the distance from the observer to the stimulus
(printout, computer screen, etc.) If a given feature subtends
a visual angle b when observed from distance d, the fea-
ture’s size l is

l ¼ d � tan b: ðA:1Þ
This projection is measured on the image space as a spa-

tial measure, which in turn can be related to a period, i.e. a
cycle, at a given spatial frequency. By definition, a scale s is
related to a certain frequency mðsÞ, i.e. to a period
T ¼ 1=mðsÞ. This relation is defined by 2s ¼ T ¼ l=lp, where
l=lp is the number of pixels into one frequency period T,
and lp is the image pixel size.
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If instead of 1 cycle, i.e. 1 period, we want to include 4
cycles of a certain spatial scale in the same longitude, we
can define

4T � 4 � 2sthr ¼ l
lp
: ðA:2Þ

being sthr this particular scale. If we take the particular case
of a feature that show 1 visual degree when observed at dis-
tance d, using Eq. (A.1) into Eq. (A.2) we obtain

sthr ¼ log2

d � tan 1�

4 � lp

� �
: ðA:3Þ

The sthr factor is the image scale associated to the mthr ¼ 4
cpd induction threshold value when observing an image
with a pixel size lp from a distance d.
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