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Parametric fuzzy sets for automatic color naming
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In this paper we present a parametric model for automatic color naming where each color category is modeled
as a fuzzy set with a parametric membership function. The parameters of the functions are estimated in a
fitting process using data derived from psychophysical experiments. The name assignments obtained by the
model agree with previous psychophysical experiments, and therefore the high-level color-naming information
provided can be useful for different computer vision applications where the use of a parametric model will
introduce interesting advantages in terms of implementation costs, data representation, model analysis, and
model updating. © 2008 Optical Society of America
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. INTRODUCTION
olor is a very important visual cue in human perception.
mong the various visual tasks performed by humans

hat involve color, color naming is one of the most com-
on. However, the perceptual mechanisms that rule this

rocess are still not completely known [1]. Color naming
as been studied from very different points of view. The
nthropological study of Berlin and Kay [2] was a starting
oint that stimulated much research about the topic in
he subsequent decades. They studied color naming in dif-
erent languages and stated the existence of universal
olor categories. They also defined the set of 11 basic cat-
gories that have the most evolved languages. These are
hite, black, red, green, yellow, blue, brown, purple, pink,
range, and gray. Since then, several studies have con-
rmed and extended their results [3–6].
In computer vision, color has been numerically repre-

ented in different color spaces that, unfortunately, do not
asily derive information about how color is named by hu-
ans. Hence a computational model of color naming
ould be very useful for several tasks such as segmenta-

ion, retrieval, tracking, or human–machine interaction.
lthough some models based on a pure tessellation of a
olor space have been proposed [7–9], the most accepted
ramework has been to consider color naming as a fuzzy
rocess; that is, any color stimulus has a membership
alue between 0 and 1 to each color category. Kay and
cDaniel [10] were the first to propose a theoretical fuzzy
odel for color naming. Later, some approaches from the

omputer vision field adopted this point of view. Lammens
11] developed a fuzzy computational model where the
embership to the color categories was modeled by a

ariant of the Gaussian function that was fitted to Berlin
nd Kay’s data. In recent years, more complex and com-
lete models have been proposed. Mojsilovic [12] defined a
erceptual metric derived from color-naming experiments
nd proposed a model that also takes into account other
erceptual issues such as color constancy and spatial av-
1084-7529/08/102582-12/$15.00 © 2
raging. Seaborn et al. [13] have developed a fuzzy model
ased on the application of the fuzzy k-means algorithm
o the data obtained from the psychophysical experiments
f Sturges and Whitfield [14]. More recently, van den
roek et al. [15] have proposed a categorization method
ased on psychophysical data and the Euclidean distance.
part from Lammens’ model, the rest are nonparametric
odels.
In this paper we present a fuzzy color-naming model

ased on the use of parametric membership functions
hose advantages are discussed later in Section 2. The
ain goal of this model is to provide high-level color de-

criptors containing color-naming information useful for
everal computer vision applications [16–19].

The paper is organized as follows. In Section 2, we ex-
lain the fuzzy framework and present our parametric
pproach. Next, in Section 3, we detail the process fol-
owed to estimate the parameters of the model. Section 4
s devoted to discussing the results obtained and, finally,
n Section 5, we present the conclusions of this work.

. PARAMETRIC MODEL
he essential contribution of this paper is to take a fur-

her step toward building computational engines to auto-
ate the color categorization task. As similarly done in

revious works, such as Mojsilovic in [12] or Seaborn
t al. in [13], we present the color-naming task as a deci-
ion problem formulated in the frame of the fuzzy-set
heory [20]. Whereas in the first work a nearest neighbor
lassifier is used, in the second one a fuzzy k-means algo-
ithm is used. The essential difference of our proposal re-
ies on the definition of a parametric model; that is, we
ropose a set of tuneable parameters that analytically de-
ne the shape of the fuzzy sets representing each color
ategory. Parametric models have been previously used to
odel color information [21], and the suitability of such

n approach can be summed up in the following points:
008 Optical Society of America
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Inclusion of prior knowledge. Prior knowledge about
he structure of the data allows us to choose the best
odel on each case. However, this could turn into a dis-

dvantage if a nonappropriate function for the model is
elected.

Compact categories. Each category is completely de-
ned by a few parameters, and training data do not need
o be stored after an initial fitting process. This implies
ower memory usage and less computation time when the

odel is applied.
Meaningful parameters. Each parameter has a mean-

ng in terms of the characterization of the data, which al-
ows us to modify and improve the model by just adjusting
he parameters.

Easy analysis. As a consequence of the previous point,
he model can be analyzed and compared by studying the
alues of its parameters.

Considering the perceptual spaces derived from previ-
us works and from psychophysical data, we have fitted
olor membership using a triple-sigmoid function [see Eq.
11)] for the eight basic chromatic categories (Red, Or-
nge, Brown, Yellow, Green, Blue, Purple, and Pink). To
his end, we have worked on the CIELab color space,
ince it is a quasi-perceptually-uniform color space where

good correlation between the Euclidean distance be-
ween color pairs and the perceived color dissimilarity can
e observed. It is likely that other spaces could be suitable
henever one of the dimensions correlates with color

ightness and the other two with chromaticity compo-
ents. In this paper, we will denote any color point in such
space as s= �I ,c1 ,c2�, where I is the lightness and c1 and

2 are the chromaticity components of the color point.
Ideally, color memberships should be modeled by three-

imensional functions, i.e., functions defined by R3

�0,1�, but unfortunately it is not easy to infer precisely
he way in which color-naming data are distributed in the
olor space, and hence finding parametric functions that
t these data is a very complicated task. For this reason,

n our proposal the three-dimensional color space has
een sliced into a set of NL levels along the lightness axis
see Fig. 1), obtaining a set of chromaticity planes over
hich membership functions have been modeled by two-
imensional functions. Therefore, any specific chromatic
ategory will be defined by a set of functions, each one de-

ig. 1. Scheme of the model. The color space is divided into NL
evels along the lightness axis.
ending on a lightness component, as is expressed later in
q. (12). Achromatic categories (Black, Gray, and White)
ill be given as the complementary function of the chro-
atic ones but weighted by the membership function of

ach one of the three achromatic categories. To go into the
etails of the proposed approach, we will first give the ba-
is of the fuzzy framework, and afterward we will pose
he considerations on the function shapes for the chro-
atic categories. Finally, the complementary achromatic

ategories will be derived.

. Fuzzy Color Naming
fuzzy set is a set whose elements have a degree of mem-

ership. In a more formal way, a fuzzy set A is defined by
crisp set X, called the universal set, and a membership

unction, �A, which maps elements of the universal set
nto the [0, 1] interval, that is, �A :X→ �0,1�.

Fuzzy sets are a good tool to represent imprecise con-
epts expressed in natural language. In color naming, we
an consider that any color category, Ck, is a fuzzy set
ith a membership function, �Ck

, which assigns, to any
olor sample s represented in a certain color space, i.e.,
ur universal set, a membership value �Ck

�s� within the
0,1] interval. This value represents the certainty we have
hat s belongs to category Ck, which is associated with the
inguistic term tk.

In our context of color categorization with a fixed num-
er of categories, we need to impose the constraint that,
or a given sample s, the sum of its memberships to the n
ategories must be the unity

�
k=1

n

�Ck
�s� = 1 with �Ck

�s� � �0,1�, k = 1, . . . ,n.

�1�

n the rest of the paper, this constraint will be referred to
s the unity-sum constraint. Although this constraint
oes not hold in fuzzy-set theory, it is interesting in our
ase because it allows us to interpret the memberships of
ny sample as the contributions of the considered catego-
ies to the final color sensation.

Hence, for any given color sample s, it will be possible
o compute a color descriptor, CD, such as

CD�s� = ��C1
�s�, . . . ,�Cn

�s��, �2�

here each component of this n-dimensional vector de-
cribes the membership of s to a specific color category.

The information contained in such a descriptor can be
sed by a decision function, N�s�, to assign the color name
f the stimulus s. The most easy decision rule we can de-
ive is to choose the maximum from CD�s�:

N�s� = tkmax
�kmax = arg max

k=1,. . .,n
��Ck

�s��, �3�

here tk is the linguistic term associated with color cat-
gory Ck.

In our case the categories considered are the basic cat-
gories proposed by Berlin and Kay, that is, n=11, and
he set of categories is
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Ck � �Red,Orange,Brown,Yellow,Green,Blue,Purple,

Pink,Black,Gray,White�. �4�

. Chromatic Categories
ccording to the fuzzy framework defined previously, any

unction we select to model color categories must map val-
es to the [0,1] interval, i.e., �Ck

�s�� �0,1�. In addition,
he observation of the membership values of psychophysi-
al data obtained from a color-naming experiment [22]
ade us hypothesize about a set of necessary properties

hat membership functions for the chromatic categories
hould fulfill:

• Triangular basis. Chromatic categories present a pla-
eau, or area with no confusion about the color name, with

triangular shape and a principal vertex shared by all
he categories.

• Different slopes. For a given chromatic category, the
lope of naming certainty toward the neighboring catego-
ies can be different on each side of the category (e.g.,
ransition from blue to green can be different from that
rom blue to purple).

• Central notch. The transition from a chromatic cat-
gory to the central achromatic one has the form of a
otch around the principal vertex.
In Fig. 2 we show a scheme of the preceding conditions

n a chromaticity diagram where the samples of the color-
aming experiment have been plotted.
After considering different membership functions

23–25] that fulfilled some of the previous properties, we
ave defined a new variant of them, the triple sigmoid
ith elliptical center (TSE), as a two-dimensional func-

ion, TSE :R2→ �0,1�. The definition of the TSE starts
rom the one-dimensional sigmoid function:

S1�x,�� =
1

1 + exp�− �x�
, �5�

here � controls the slope of the transition from 0 to 1
see Fig. 3(a)].

This can be extended to a two-dimensional sigmoid
unction, S :R2→ �0,1�, as

ig. 2. (Color online) Desirable properties of the membership
unction for chromatic categories. In this case, on the blue
ategory.
S�p,�� =
1

1 + exp�− �uip�
, i = 1,2, �6�

here p= �x ,y�T is a point in the plane and vectors u1
�1,0� and u2= �0,1� define the axis in which the function

s oriented [see Fig. 3(b)].
By adding a translation, t= �tx , ty�, and a rotation, �, to

he previous equation, the function can adopt a wide set
f shapes. In order to represent the formulation in a com-
act matrix form, we will use homogeneous coordinates
26]. Let us redefine p to be a point in the plane expressed
n homogeneous coordinates as p= �x ,y ,1�T, and let us de-
ote the vectors u1= �1,0,0� and u2= �0,1,0�. We define
1 as a function oriented in axis x with rotation � with
espect to axis y, and S2 as a function oriented in axis y
ith rotation � with respect to axis x:

Si�p,t,�,�� =
1

1 + exp�− �uiR�Ttp�
, i = 1,2, �7�

here Tt and R� are a translation matrix and a rotation
atrix, respectively:

Tt = 	
1 0 − tx

0 1 − ty

0 0 1

, R� = 	

cos��� sin��� 0

− sin��� cos��� 0

0 0 1

 . �8�

ig. 3. (Color online) (a) Sigmoid function in one dimension. The
alue of � determines the slope of the function. (b) Sigmoid func-
ion in two dimensions. Vector ui determines the axis in which
he function is oriented.



(
p

w
D
4

t
(
m

E

w
f
r
i
b
i
f

t

w

f
t

f
e

F
s
f
d
s

F
E

Benavente et al. Vol. 25, No. 10 /October 2008 /J. Opt. Soc. Am. A 2585
By multiplying S1 and S2, we define the double-sigmoid
DS) function, which fulfills the first two properties pro-
osed before:

DS�p,t,�DS� = S1�p,t,�y,�y�S2�p,t,�x,�x�, �9�

here �DS= ��x ,�y ,�x ,�y� is the set of parameters of the
S function. Functions S1, S2, and DS are plotted in Fig.
.
To obtain the central notch shape needed to fulfill the

hird proposed property, let us define the elliptic-sigmoid
ES) function by including the ellipse equation in the sig-
oid formula:

S�p,t,�ES�

=
1

1 + exp�− �e�	u1R�Ttp

ex



2

+ 	u2R�Ttp

ey



2

− 1
�
, �10�

here �ES= �ex ,ey ,� ,�e� is the set of parameters of the ES
unction, ex and ey are the semiminor and semimajor axes,
espectively, � is the rotation angle of the ellipse, and �e
s the slope of the sigmoid curve that forms the ellipse
oundary. The function obtained is an elliptic plateau if �e
s negative and an elliptic valley if �e is positive. The sur-
aces obtained can be seen in Fig. 5.

ig. 4. (Color online) Two-dimensional sigmoid functions. (a) S1,
igmoid function oriented in the x-axis direction (b) S2, sigmoid
unction oriented in the y-axis direction. (c) DS, product of two
ifferently oriented sigmoid functions generates a plateau with
ome of the properties needed for the membership function.
Finally, by multiplying the DS by the ES (with a posi-
ive �e), we define the TSE as

TSE�p,�� = DS�p,t,�DS�ES�p,t,�ES�, �11�

here �= �t ,�DS ,�ES� is the set of parameters of the TSE.
The TSE function defines a membership surface that

ulfills the properties defined at the beginning of Subsec-
ion 2.B. Figure 6 shows the form of the TSE function.

Hence, once we have the analytic form of the chosen
unction, the membership function for a chromatic cat-
gory �Ck

is given by

ig. 5. (Color online) Elliptic-sigmoid function ES�p ,t ,�ES�. (a)
S for �e�0 and (b) ES for �e�0.

Fig. 6. (Color online) TSE function.
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�Ck
�s� = �

�Ck

1 = TSE�c1,c2,�Ck

1 � if I � I1

�Ck

2 = TSE�c1,c2,�Ck

2 � if I1 � I � I2,

] ]

�Ck

NL = TSE�c1,c2,�Ck

NL� if INL−1 � I
� �12�

here s= �I ,c1 ,c2� is a sample on the color space, NL is the
umber of chromaticity planes, �Ck

i is the set of param-
ters of the category Ck on the ith chromaticity plane, and
i are the lightness values that divide the space into the

L lightness levels.
By fitting the parameters of the functions, it is possible

o obtain the variation of the chromatic categories
hrough the lightness levels. By doing this for all the cat-
gories, it will be possible to obtain membership maps;
hat is, for a given lightness level we have a membership
alue to each category for any color point s= �I ,c1 ,c2� of
he level. Notice that since some categories exist only at
ertain lightness levels (e.g., brown is defined only for low
ightness values and yellow only for high values), on each
ightness level not all the categories will have member-
hips different from zero for any point of the level. Figure
shows an example of the membership map provided by

he TSE functions for a given lightness level, in which
here exist six chromatic categories. The other two chro-
atic categories in this example would have zero mem-

ership for any point of the level.

. Achromatic Categories
he three achromatic categories (Black, Gray, and White)
re first considered as a unique category at each chroma-
icity plane. To ensure that the unity-sum constraint is
ulfilled (i.e., the sum of all memberships must be one), a
lobal achromatic membership, �A, is computed for each
evel as

�A
i �c1,c2� = 1 − �

k=1

nc

�Ck

i �c1,c2�, �13�

here i is the chromaticity plane that contains the
ample s= �I ,c1 ,c2� and nc is the number of chromatic cat-
gories (in our case, nc=8). The differentiation among the
hree achromatic categories must be done in terms of
ightness. To model the fuzzy boundaries among these

ig. 7. (Color online) TSE function fitted to the chromatic cat-
gories defined on a given lightness level. In this case, only six
ategories have memberships different from zero.
hree categories, we use one-dimensional sigmoid func-
ions along the lightness axis:

ABlack
�I,�Black� =

1

1 + exp�− �b�I − tb��
, �14�

�AGray
�I,�Gray� =

1

1 + exp��b�I − tb��

1

1 + exp�− �w�I − tw��
,

�15�

AWhite
�I,�White� =

1

1 + exp��w�I − tw��
, �16�

here �Black= �tb ,�b�, �Gray= �tb ,�b , tw ,�w�, and �White
�tw ,�w� are the set of parameters for Black, Gray, and
hite, respectively. Figure 8 shows a scheme of this divi-

ion along the lightness axis.
Hence, the membership of the three achromatic catego-

ies on a given chromaticity plane is computed by weight-
ng the global achromatic membership [Eq. (13)] with the
orresponding membership in the lightness dimension
Eqs. (14)–(16)]:

�Ck
�s,�Ck

� = �A
i �c1,c2��ACk

�I,�Ck
�,

9 � k � 11, Ii � I � Ii+1, �17�

here i is the chromaticity plane in which the sample is
ncluded and the values of k correspond to the achromatic
ategories [see Eq. (4)]. In this way we can assure that the
nity-sum constraint is fulfilled on each specific chroma-
icity plane,

�
k=1

11

�Ck
i �s� = 1, i = 1, . . . ,NL, �18�

here NL is the number of chromaticity planes in the
odel.

. FUZZY-SETS ESTIMATION
nce we have defined the membership functions of the
odel, the next step is to fit their parameters. To this end,
e need a set of psychophysical data, D, composed of a set
f samples from the color space and their membership
alues to the 11 categories,

ig. 8. Sigmoid functions are used to differentiate among the
hree achromatic categories
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D = ��si,m1
i , . . . ,m11

i ��, i = 1, . . . ,ns, �19�

here si is the ith sample of the learning set, ns is the
umber of samples in the learning set, and mk

i is the
embership value of the ith sample to the kth category.
Such data will be the knowledge basis for a fitting pro-

ess to estimate the model parameters, taking into ac-
ount our unity-sum constraint given in Eq. (18). In this
ase, the model will be estimated for the CIELab space,
ince it is a standard space with interesting properties.
owever, any other color space with a lightness dimen-

ion and two chromatic dimensions would be suitable for
his purpose.

. Learning Set
he data set for the fitting process must be perceptually
ignificant; that is, the judgements should be coherent
ith results from psychophysical color-naming experi-
ents and the samples should cover all the color space. At

resent, there are no color-naming experiments providing
uzzy judgements. We proposed a fuzzy methodology for
hat purpose in [22], but the sampling of the color space is
ot large enough to fit the presented model.
Thus, to build a wide learning set, we have used the

olor-naming map proposed by Seaborn et al. in [13]. This
olor map has been built by making some considerations
n the consensus areas of the Munsell color space pro-
ided by the psychophysical data from the experiments of
turges and Whitfield [14]. Using such data and the fuzzy
-means algorithm, this method allows us to derive the
emberships of any point in the Munsell space to the 11

asic color categories.
In this way, we have obtained the memberships of a

ide sample set, and afterward we have converted this
olor sampling set to their corresponding CIELab repre-
entation. Our data set was initially composed of the 1269
amples of the Munsell Book of Color [27]. Their reflec-
ances and CIELab coordinates, calculated by using the
IE D65 illuminant, are available at the Web site of the
niversity of Joensuu in Finland [28]. In order to avoid
roblems in the fitting process due to the reduced number
f achromatic and low-chroma samples, the set was com-
leted with 18 achromatic samples (from value=1 to
alue=9.5 at steps of 0.5), 320 low-chroma samples (for
alues from 2 to 9, hue at steps of 2.5, and chroma=1),
nd 10 samples with value=2.5, and chroma=2 (hues
YR, 7.5YR, 10YR, 2.5Y, 5Y, 7.5Y, 10Y, 2.5GY, 5GY, and
.5GY). The CIELab coordinates of these additional
amples were computed with the Munsell Conversion
oftware (Version 6.5.10). Therefore, the total number of
amples of our learning set is 1617. Hence, with such a
ata set we accomplish the perceptual significance re-
uired for our learning set. First, by using Seaborn’s
ethod, we include the results of the psychophysical ex-

eriment of Sturges and Whitfield, and, in addition, it
overs an area of the color space that suffices for our pur-
ose.

. Parameter Estimation
efore starting with the fitting process, the number of
hromaticity planes and the values that define the light-
ess levels [see Eq. (12)] must be set. These values de-
end on the learning set used and must be chosen while
aking into account the distribution of the samples from
he learning set. In our case, the number of planes that
elivered best results was found to be 6, and the values
hat define the levels were selected by choosing some local
inima in the histogram of samples along the lightness

xis. Figure 9 shows the samples’ histogram and the val-
es selected. However, if a more extensive learning set
ere available, a higher number of levels would possibly
eliver better results.
For each chromaticity plane, the global goal of the fit-

ing process is finding an estimation of the parameters, �̂j,
hat minimizes the mean squared error between the
emberships from the learning set and the values pro-

ided by the model:

�̂j = arg min
�j

1

ncp
�
i=1

ncp

�
k=1

nc

��Ck

j �si,�Ck

j � − mk
i �2, j = 1, . . . ,NL,

�20�

here �̂j= ��̂C1

j , . . . , �̂Cnc

j � is the estimation of the param-
ters of the model for the chromatic categories on the jth
hromaticity plane, �Ck

j is the set of parameters of the cat-
gory Ck for the jth chromaticity plane, nc is the number
f chromatic categories, ncp is the number of samples of
he chromaticity plane, �Ck

j is the membership function of
he color category Ck for the jth chromaticity plane, and

k
i is the membership value of the ith sample of the

earning set to the kth category.
The previous minimization is subject to the unity-sum

onstraint:

�
k=1

11

�Ck

j �s,�Ck

j � = 1, ∀ s = �I,c1,c2� � Ij−1 � I � Ij,

�21�

hich is imposed to the fitting process through two as-
umptions. The first one is related to the membership
ransition from chromatic categories to achromatic cat-
gories:

Assumption 1: All the chromatic categories in a chro-
aticity plane share the same ES function, which models

he membership transition to the achromatic categories.
his means that all the chromatic categories share the set
f estimated parameters for ES:

ig. 9. (Color online) Histogram of the learning set samples
sed to determine the values that define the lightness levels of
he model.
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�ESCp

j = �ESCq

j , tCp

j = tCq

j , ∀ p,q � �1, . . . ,nc�,

�22�

here nc is the number of chromatic categories.
The second assumption refers to the membership tran-

ition between adjacent chromatic categories:
Assumption 2: Each pair of neighboring categories, Cp

nd Cq, share the parameters of slope and angle of the DS
unction, which define their boundary:

�y
Cp = �x

Cq, �y
Cp = �x

Cq − �	

2� , �23�

here the superscripts indicate the category to which the
arameters correspond.
These assumptions considerably reduce the number of

arameters to be estimated. Hence, for each chromaticity
lane, we must estimate 2 parameters for the translation,
= �tx , ty�, 4 for the ES function, �ES= �ex ,ey ,� ,�e�, and a
aximum of 2
nc for the DS functions, since the other

wo parameters of �DS= ��x ,�y ,�x ,�y� can be obtained
rom the neighboring category [Eq. (23)].

Hence, following the two previous assumptions, the pa-
ameters of the chromatic categories at each chromaticity
lane, �̂Ck

j = �t̂j , �̂DSCk

j , �̂ES
j �, with k=1, . . . ,nc, are estimated

n two steps:
1. According to assumption 1, we estimate the param-

ters of a unique ES function, t̂j and �̂ES
j , for each chroma-

icity plane by minimizing:

�t̂j, �̂ES
j � = arg min

tj,�ES
j

1

ncp
�
i=1

ncp �ES�si,tj,�ES
j � − �

k=9

11

mk
i�2

,

�24�

here ncp is the number of samples from the learning set
n the jth chromaticity plane and mk

i is the membership to
he kth category of the ith sample for values of k between
and 11, which correspond to the achromatic categories

ccording to Eq. (4).
2. Considering assumption 2 allows us to estimate the

est of the parameters, �̂DSCk

j , of each color category by
inimizing the following expression for each pair of

eighboring categories, Cp and Cq:

��̂DSCp

j , �̂DSCq

j � = argmin
�DSCp

j ,�DSCq

j
�
i=1

ncp

���Cp

j �si,�Cp

j � − mp
i �2

+ ��Cq

j �si,�Cq

j � − mq
i �2�, �25�

here �Ck

j = �t̂j ,�DSCk

j , �̂ES
j �.

Once all the parameters of the chromatic categories
ave been estimated for all the chromaticity planes, the
arameters used to differentiate among the three achro-
atic categories, �̂A= ��̂C9

, �̂C10
, �̂C11

� are estimated by
inimizing the expression
�̂A = arg min
�A

�
i=1

ns

�
k=9

11

��Ck
�si,�Ck

� − mk
i �2, �26�

here ns is the number of samples in the learning set and
he values of k correspond to the three achromatic catego-
ies, that is, C9=Black, C10=Gray, and C11=White [see
q. (4)].
All the minimizations to estimate the parameters are

erformed by using the simplex search method proposed
n [29]. After the fitting process, we obtain the parameters
hat completely define our color-naming model and that
re presented and discussed in the next section.

. RESULTS AND DISCUSSION
he essential result of this work is the set of parameters
f the color-naming model that are summarized in Table
.
The evaluation of the fitting process is done in terms of

wo measures. The first one is the mean absolute error
MAEfit� between the learning set memberships and the
emberships obtained from the parametric membership

unctions:

MAEfit =
1

ns

1

11�
i=1

ns

�
k=1

11

�mk
i − �Ck

�si��, �27�

here ns is the number of samples in the learning set, mk
i

s the membership of si to the kth category, and �Ck
�si� is

he parametric membership of si to the kth category pro-
ided by our model.

The value of MAEfit is a measure of the accuracy of the
odel fitting to the learning data set, and in our case the

alue obtained was MAEfit=0.0168. This measure was
lso computed for a test data set of 3149 samples. To build
he test data set, the Munsell space was sampled at hues
.25, 3.75, 6.25, and 8.75; values from 2.5 to 9.5 at steps of
unit; and chromas from 1 to the maximum available
ith a step of 2 units. As in the case of the learning set,

he memberships of the test set that were considered the
round truth were computed with Seaborn’s algorithm.
he corresponding CIELab values to apply our paramet-
ic functions were computed with the Munsell Conversion
oftware. The value of MAEfit obtained was 0.0218, which
onfirms the accuracy of the fitting that allows the model
o provide membership values with very low error even
or samples that were not used in the fitting process.

The second measure evaluates the degree of fulfillment
f the unity-sum constraint. Considering as error the dif-
erence between the unity and the sum of all the member-
hips at a point, pi, the measure proposed is

MAEunitsum =
1

np
�
i=1

np �1 − �
k=1

11

�Ck
�pi�� , �28�

here np is the number of points considered and �Ck
is

he membership function of category Ck.
To compute this measure, we have sampled each one of

he six chromaticity planes with values from −80 to 80 at
teps of 0.5 units on both the a and b axes, which means
hat np=153,600. The value obtained for MAEunitsum
6.41e−04 indicates that the model provides a great ful-
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llment of that constraint, making the model consistent
ith the proposed framework.
Hence, for any point of the CIELab space we can com-

ute the membership to all the categories and, at each
hromaticity plane, these values can be plotted to gener-
te a membership map. In Fig. 10 we show the member-
hip maps of the six chromaticity planes considered, with
he membership surfaces labeled with their correspond-
ng color terms.

In many previous works on color naming, results have
een evaluated in terms of the categorization of the Mun-
ell space [2,11,13,30]. To be able to compare our results
o the previous ones, we will also categorize the Munsell
pace by applying the maximum criteria [Eq. (3)] as a de-
ision rule to assign a color name to each chip of the Mun-
ell data set.

To evaluate the plausibility of the model with psycho-
hysical data, we compare our categorization to the re-
ults reported in two works of reference: the study of Ber-

Table 1. Parameters of the Triple-

chromatic axis
lack–Gray boundary
ray–White boundary

hromaticity plane 1

a=0.42 ea=5.89 �e=9.84

b=0.25 eb=7.47 �=2.32
�a �b �a �b

ed −2.24 −56.55 0.90 1.72
rown 33.45 14.56 1.72 0.84
reen 104.56 134.59 0.84 1.95
lue 224.59 −147.15 1.95 1.01
urple −57.15 −92.24 1.01 0.90

hromaticity plane 3

a=−0.12 ea=5.38 �e=6.81

b=0.52 eb=6.98 �=19.58
�a �b �a �b

ed 13.57 −45.55 1.00 0.57
range 44.45 −28.76 0.57 0.52
rown 61.24 6.65 0.52 0.84
reen 96.65 109.38 0.84 0.60
lue 199.38 −148.24 0.60 0.80
urple −58.24 −112.63 0.80 0.62
ink −22.63 −76.43 0.62 1.00

hromaticity plane 5

a=−0.57 ea=5.37 �e=100.00

b=1.16 eb=6.90 �=24.75
�a �b �a �b

range 25.75 −15.85 2.00 0.84
ellow 74.15 12.27 0.84 0.86
reen 102.27 98.57 0.86 0.74
lue 188.57 −150.83 0.74 0.47
urple −60.83 −122.55 0.47 1.74
ink −32.55 −64.25 1.74 2.00

aAngles are expressed in degrees, and subscripts x and y are changed to a and b,
ave been estimated for the CIELab space.
in and Kay [2] and the experiments of Sturges and
hitfield [14]. Figure 11 shows the boundaries found by
erlin and Kay in their work, superimposed on our cat-
gorization. Samples inside these boundaries assigned
ith a different name by our model are marked with a

ross. As can be seen, there are a total of 17 samples out of
10 inside Berlin and Kay’s boundaries with a different
ame. The errors are concentrated on certain boundaries,
amely, green-blue, blue-purple, purple-pink, and purple-
ed.

The comparison to Sturges and Whitfield’s results is
resented in Fig. 12. In Sturges and Whitfield’s experi-
ent the samples labeled with the same name by all the

ubjects defined the consensus areas for each category.
mong these samples, the fastest-named sample for each
ategory was its focus. These areas are superimposed over
ur categorization to show that all the consensus and fo-
al samples from Sturges and Whitfield’s experiment are
ssigned the same name by our model.

oid with Elliptical Center Modela

.28 �b=−0.71
.65 �w=−0.31

Chromaticity plane 2
ta=0.23 ea=6.46 �e=6.03
tb=0.66 eb=7.87 �=17.59

�a �b �a �b

Red 2.21 −48.81 0.52 5.00
Brown 41.19 6.87 5.00 0.69
Green 96.87 120.46 0.69 0.96
Blue 210.46 −148.48 0.96 0.92
Purple −58.48 −105.72 0.92 1.10
Pink −15.72 −87.79 1.10 0.52

Chromaticity plane 4
ta=−0.47 ea=5.99 �e=7.76
tb=1.02 eb=7.51 �=23.92

�a �b �a �b

Red 26.70 −56.88 0.91 0.76
Orange 33.12 −9.90 0.76 0.48
Yellow 80.10 5.63 0.48 0.73
Green 95.63 108.14 0.73 0.64
Blue 198.14 −148.59 0.64 0.76
Purple −58.59 −123.68 0.76 5.00
Pink −33.68 −63.30 5.00 0.91

Chromaticity plane 6
ta=−1.26 ea=6.04 �e=100.00
tb=1.81 eb=7.39 �=−1.19

�a �b �a �b

Orange 25.74 −17.56 1.03 0.79
Yellow 72.44 16.24 0.79 0.96
Green 106.24 100.05 0.96 0.90
Blue 190.05 −149.43 0.90 0.60
Purple −59.43 −122.37 0.60 1.93
Pink −32.37 −64.26 1.93 1.03

vely, in order to make parameter interpretation easier, since parameters in this work
Sigm

tb=28
tw=79

respecti
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Fig. 10. (Color online) Membership maps for the six chromaticity planes of the model.
ig. 11. (Color online) Comparison between our model’s Munsell categorization and Berlin and Kay’s boundaries. Samples named dif-
erently by our model are marked with a cross.
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The analysis done to our TSE model (TSEM) was also
erformed on some previous categorizations. These are
btained by Lammens’s Gaussian model (LGM) [11], an
nglish speaker presented by MacLaury (MES) in [30],
eaborn’s fuzzy k-means model (SFKM) [13], and our pre-
ious TS model (TSM) [24]. The results are summarized
n Table 2.

As can be seen in the table, the results of our TSEM
qual the previous best of Seaborn’s nonparametric model
ut add the advantages of having a parametric model
hat have been previously discussed in Section 2. Notice
hat although the learning process of both models was
ased on data derived from Sturges’s results, they are the
ost consistent with Berlin and Kay’s experiments and

re also better than the results of the English speaker’s
ategorization, which shows the variability of the prob-
em, since any individual subject’s judgements will nor-

ally differ from those of a color-naming experiment.

. CONCLUSIONS
n this paper we have proposed a parametric fuzzy model
or color naming based on the definition of the TSE as a
embership function. The use of a parametric model in-

roduces several advantages with respect to previous non-
arametric approaches. These advantages, which have
een discussed in Section 2, include a reduction in the
mplementation costs in terms of memory and computa-
ion time; a compact data representation; and simplicity
or model analysis, since each parameter has a meaning

Table 2. Comparison of Different Munsell Categori
of Berlin and Kay [2] an

Model

Berlin and Kay Data

Coincidences Errors %

LGM 161 49 2
MES 182 28 1
TSM 185 25 1

SFKM 193 17
TSEM 193 17

ig. 12. (Color online) Consensus areas and focus from Sturges
f the Munsell array.
n terms of the characterization of the data and, conse-
uently, the model can be easily updated by just tuning
ome of the parameters.

The model has been conceived for any color space with
wo chromatic dimensions and a lightness dimension, but
n the present work the parameters have been estimated
or the CIELab space. The estimation process includes
ome constraints to assure the fulfillment of our imposed
onstraint that the memberships sum for any point must
e one. The result is the set of parameters that defines a
odel that achieves a low fitting error to both the learn-

ng and test data sets and also fulfills the unity-sum con-
traint. The evaluation of the model when compared to
revious results from the color-naming experiments of
erlin and Kay, and Sturges and Whitfield demonstrates

hat our model is plausible with these psychophysical
ata.
Hence, the memberships to the 11 basic color categories

an be obtained for any point in the CIELab space to pro-
ide a color-naming descriptor with meaningful informa-
ion about how humans name colors. The results are
romising and have many applications to different com-
uter vision tasks, such as image description, indexing,
nd segmentation, among others, where inclusion of this
igh-level information might improve their performance.
he proposed representation of color information could
lso be used as a more perceptual measure of similarity
or color, instead of the Euclidean distance in color spaces.

However, it must be pointed out that the model has
een fitted to data derived from psychophysical experi-

ns to the Results from Color-Naming Experiments
rges and Whitfield [14]

Sturges and Whitfield Data

Coincidences Errors % Errors

92 19 17.12
107 4 3.60
108 3 2.70
111 0 0.00
111 0 0.00

hitfield’s experiment superimposed on our model’s categorization
zatio
d Stu

Errors

3.33
3.33
1.90
8.10
8.10
and W
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ents where a homogeneous color area is shown to an ob-
erver who has been adapted to the scene illuminant, and
herefore the name assignment has been done under ideal
onditions where influences from neither the illuminant
or the surround of the observed area have any effect on
he naming process. In practice, the color-name assign-
ent is a content-dependent task, and therefore percep-

ual considerations about the surround influence must be
aken into account. The model we have proposed is as-
umed to work on perceived images, that is, images where
he effects of perceptual adaptation to the illuminant and
o the surround have been previously considered in a pre-
rocessing step. Hence, the application of a color con-
tancy algorithm can provide images under a canonical il-
uminant, thus simulating an adaptation process to the
lluminant [31–33]. On the other hand, induction opera-
ors take into account the influence of the color surrounds
n the final color representations as proposed in [34,35].

Another fact that must be considered is that since
turges and Whitfield’s experiments were done with
hysical color samples, the data used to fit the model re-
uce the space that occupy some categories (e.g., red) due
o the limitations in the production of some colors with
igments. Hence, if the model is applied to other kinds of
timuli, e.g., lights, some errors could appear. This prob-
em has already been detected in previous works [36].

One limitation of the model is the reduced vocabulary
f color names that are considered. However, this vocabu-
ary could be easily extended by using the fuzzy informa-
ion provided by the model. Hence, compound nouns could
e used for samples with a membership of 0.5 to two cat-
gories (e.g., samples with memberships 0.5 to green and
.5 to blue could be named as blue-green), or the “-ish”
uffix could be used on samples with a high membership
o a category and up to a certain membership to another
e.g., samples with memberships 0.7 to green and 0.3 to
lue could be named as bluish green). Nonetheless, the 11
asic categories considered will normally be enough for
ost of the applications the model can have, as psycho-

hysical experiments have demonstrated that humans
end to use basic terms more frequently, more consis-
ently, and faster than nonbasic color terms [3,4].

It would also be interesting to obtain a wider set of data
rom a fuzzy psychophysical experiment covering an area
f the color space as wide as possible and thus avoiding
ndersampling problems. With these psychophysical
ata, the proposed model could be improved on several
oints. First, it would be desirable to relax or even elimi-
ate the first assumption done in the fitting process to al-

ow for the membership transition from chromatic catego-
ies to the achromatic center to be different for each
ategory. Second, the division of the color space into dif-
erent lightness levels should be removed. Observation of
he membership maps of the TSE model (Fig. 10) allows
s to detect some tendencies in the evolution of the
oundaries between color categories across lightness lev-
ls. Hence, the parameters of the membership functions
ould be interpolated along the levels defined in the cur-
ent model to obtain the parameters of the membership
unctions for any given value of lightness.

However, to do this, the estimation of some parameters
hould be improved. We have noticed that for some cat-
gories, the � parameters do not vary across lightness, as
ould be expected. Intuitively, we could think that the val-
es of � should be lower for high and low lightness, where
olors are more easily confused, and therefore the transi-
ion from one color to another should be smoother and
igher for intermediate lightness levels, where there is

ess uncertainty. However, some factors cause the evolu-
ion of � values to not always be as expected. The consen-
us areas of Sturges and Whitfield’s experiment (areas
ith no confusion between subjects) are assumed to have
embership 1. Intuitively, we could think that these con-

ensus areas should be larger in the intermediate light-
ess levels than in the extremes. However, this is not the
ase, and the extension of these areas at different light-
ess is much more similar than we could expect. More-
ver, the color solid provided by the CIELab space is
ider in the central levels of lightness than in the ex-

remes. Hence, the consensus areas of Sturges and Whit-
eld are more spread out in the central areas than in the

ower and higher levels of the lightness axis. This causes
he membership transitions between regions of member-
hip 1 to be smoother in the central lightness levels than
n the low and high lightness levels. In addition, the slic-
ng of the color space into different levels can also contrib-
te to distortion of the boundaries, since all the samples
n each level are collapsed on a chromaticity plane where
emberships are modeled with our TSE functions. To

olve this, we are doing new psychophysical experiments
ocused on the areas around boundaries in order to esti-
ate better the parameters that define the transitions be-

ween categories.
Nonetheless, the final goal should be to define three-

imensional membership functions to model color catego-
ies. If a larger fuzzy data set were available, the mem-
ership distributions in the whole color space could be
nalyzed to define the properties that three-dimensional
unctions should fulfill to accurately model color catego-
ies in a way similar to what we did in this work for the
wo-dimensional functions. Unfortunately, this seems not
o be an easy task.
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