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Abstract— Road segmentation is an essential functionality for
supporting advanced driver assistance systems (ADAS) such as
road following or vehicle detection and tracking. Significant
efforts have been made in order to solve this task using vision-
based techniques. One of the major challenges of these tech-
niques is dealing with lighting variations, especially shadows.
Many of the approaches presented within this field use ad-hoc
mechanisms applied after an initial segmentation to recover
shadowed road patches. In this paper, we present an innovative
method to obtain a road segmentation algorithm robust to
extreme shadow conditions. The novelty of the proposal is the
use of a shadowless feature space in combination with a model-
based region growing algorithm. The former projects the color
images such that the shadow effect is greatly attenuated. The
latter uses histogram models to label the pixels as belonging to
the road or to the background. These models are constructed
on a frame by frame basis independently of the road shape
to avoid limitations when addressing unstructured roads. The
results presented show the validity of our approach.

I. INTRODUCTION

Advanced driver assistance systems (ADAS) have arisen
as a contribution to traffic safety, a major social issue in
developed countries. A relevant functionality is road segmen-
tation which supports ADAS applications like road departure
warning. Road segmentation has been approached using a
wide variety of techniques . Even the relevance of some
previous works concerning autonomous driving [1], [2] the
most important ones referring to this task arise from the
first DARPA Grand Challenge1. In this context, the vehicles
prepared for the challenge fuse the data provided from
multiple sensors (LIDAR, cameras and GPS) to achieve the
autonomous driving task.

Our interest is the use of computer vision methods to
solve the real–time road segmentation. In particular we use a
single forward facing color camera placed on the windshield
of a vehicle. Color cameras have many advantages over
using other sensors: higher resolution, richness of features
(color, texture), low cost, easy aesthetic integration, non–
intrusive nature and low power consumption. Within this
field, road segmentation is also used as an invaluable back-
ground segmentation stage for other functionalities such as
vehicle and pedestrian detection. Knowing the road surface
considerably reduces the image region to search for such
objects, thus, reducing false detections and allowing real–
time processes. However, road segmentation is a very chal-
lenging task. The road is in an outdoor scenario imaged
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Fig. 1. One of the greatest challenges in road segmentation using computer
vision methods is the treatment of shadows.

from a mobile platform. Hence, we deal with a continuously
changing background, the presence of different vehicles with
unknown movement, different road shapes with worn–away
asphalt (or not asphalted at all), and different illumination
conditions. The underlying idea of vision–based approaches
is to consider that the road ahead have some constant features
like color or texture that can be used to group road pixels.
However, the perception of the road surface not only depends
on its own features, which in fact are not constant, but also on
unknown lighting conditions which makes the problem very
challenging (Fig. 1). A common approach consists in keeping
the idea of homogeneous road surface as a simple model,
while shadows and reflections are corrected using ad hoc
mechanisms applied after an initial segmentation step [3],
[4], [5]. Other vision–based approaches use more complex
models to overcome road variability and lighting conditions,
so that they neither require such hard constraints nor post–
processing to deal with shadows and light changes. Some
examples are: the SCARF (Supervised Classification Applied
to Road Following) [6] which uses a mixture of Gaussians,
and the UNSCARF which is the unsupervised version [7].
More recently Tan et al. have made use of color histograms
to model the road [8] and Sha et al. apply a boosting scheme
using feature combination [9].

In this paper, following our preliminary work in [10],
rather than the usual segmentation in a color space, we use a
physics–based illumination invariant space [11] and a statis-
tical region growing algorithm for reliable road segmentation
despite illumination variations. Using this feature space we
attenuate the shadow influence from the very beginning even
using a simple road model. The invariant space consists
of a grey-scale image that results from projecting the log-
log pixel values onto the direction orthogonal to lighting
change, within and outside the umbra. This projection greatly
attenuates the shadows and it is computable in real–time
using a single–sensor color camera. Based on such invariant
images we also propose a novel approach for the real–time
grouping of road surface pixels. Commonly used region
growing algorithms characterize intra–region similarity using



first order statistics such as the mean value [12], [13].
Instead, we introduce a histogram-model based approach to
describe the homogeneity of regions and decide whether a
pixel belongs or not to the road surface. The main difference
between our approach and the one presented by Tan et al.
is the simplicity of the road model. They use four different
distributions to build the road model and one more for the
background. By contrast, and thanks to the invariant image,
we can use a single distribution to model the road and one
threshold to label the pixels. In addition, we do not need to
estimate the background model nor assume the presence of
all the road distributions for algorithm initialization.

The rest of this paper is organized as follows: in Sect.
II we review the basics of the illuminant–invariant image
space. Special interest is given to the practical problem of
the camera calibration to generate the invariant image. The
algorithm used to label the pixels as road or background
is described in Sect. III. In Sect. IV we present qualitative
results to validate the proposal. Finally, in Sect. V we present
our conclusions.

II. ILLUMINANT–INVARIANT IMAGE SPACE

A. Theory Overview

Image formation models are defined in terms of the
interaction between the spectral power distribution of illu-
mination, surface reflectance and spectral sensitivity of the
imaging sensors. Finlayson et al. have shown that if the
lighting is approximately Planckian and having Lambertian
surfaces imaged by three delta-function sensors it is possible
to generate an illuminant-invariant image (I) [11], [14], [15].
Under these assumptions, a log-log plot of two dimensional
{log(R/G), log((B/G)} values for any surface forms a straight
line provided camera sensors are fairly narrow-band. Thus,
lighting change is reduced to a linear transformation along
an almost straight line (Fig. 2).

Fig. 2. Under the assumptions of Plankian light, Lambertian surface and
narrow-band sensors, we can obtain an illuminant–invariant image which is
almost shadow free.

This theory holds even for real data with only ap-
proximately Planckian lights, non-Lambertian surfaces and

real cameras having only approximately non-narrow-band
sensors. For instance, our acquisition system includes a
Sony CCD camera at 15fps in 640× 480 Bayer 8bit mode
mounted on a vehicle driving on the road (Fig. 3). A detail
to point out is that our acquisition system was operating
in automatic shutter mode: i.e., within predefined ranges,
the shutter changes to avoid both global overexposure and
underexposure. However, provided we are using sensors with
linear response and the same shutter for the three channels,
we can model the shutter action as a multiplicative constant s,
i.e., we have sIRGB = (sR,sG,sB) and, therefore, the channel
normalization removes the constant (e.g., sR/sG = R/G).
In short, I is a gray-scale image that is obtained from
projecting the log-rgb pixel values of the incoming data onto
the direction orthogonal to the lighting change line. This
direction θ depends on each camera color characteristics.
Hence, before using the algorithm the camera must be
calibrated, thus, θ is an additional intrinsic parameter.

Fig. 3. Examples of illuminant invariant images. Upper row contains real
images of different scenarios and the lower their corresponding invariant
image. These results suggest the invariant theory holds although the theo-
retical assumptions are not perfectly achieved, i.e., the combination of our
camera, the daylight illuminant and the surface we are interested in (the
road).

B. Camera Calibration

The calibration of the camera can be done either using
calibration patterns [14] or using an entropy minimization
technique based on the information in each image [15].

Fig. 4. Log–log space representation for all the patches of every acquired
image. Every patch of each color in one image is represented using a single
point, the mean. Cameras which do not use narrow–band sensors do not
produce parallel lines for each patch.



In order to use the first method the calibration pattern
has to be imaged under different lighting conditions. Ideally,
RGB triplets of each of the pattern patches will form a
straight line in the log–log space introduced before. The
difference between all the patches is ideally reduced to just
an offset. The slope of those lines is the invariant direction
and the angle we are looking for, θ , corresponds to the
perpendicular one. In practice, those patches are not always
distributed as parallel. Moreover, there is a large dispersion
within the patch and the corresponding RGB cluster does not
clearly form a straight line (Fig. 4). The calibration angle can
be obtained using the algorithm proposed by Drew et al. in
[16]. However, even using the overall mean and a robust
estimator, the presence of outliers may bias the final line
slope affecting the estimated angle. That is, the solution is
unstable. Furthermore, this calibration technique is tedious.

The second method is proposed by Finlayson et al. [15].
The characteristic angle is obtained using the entropy his-
togram of I which is formed by projecting the incoming
data onto each possible angle θ . Given this histogram, the
invariant direction that generates an invariant image with
minimum entropy is the correct angle. That is, the method
considers the entropy as a measure of the degree of disorder
in the data. When the data is projected to the correct angle,
under the assumption the camera produces straight lines as
the light source varies, the entropy will be minimal since
each line will contribute to the same bin of the image
histogram used to calculate the entropy value. Projecting to a
different direction will scatter points across the invariant axis
producing a higher disorder and thus a higher entropy. The
algorithm proposed by Finlayson considers the nature of the
data, for real images, to estimate the bin width and the data
range to be used in the histogram of I. However, despite all
these improvements the algorithm is not repetitive at all as
shown in Fig. 5. The angle which produces the minimum
entropy varies depending on the image contents.

Fig. 5. Upper row shows some images used to calibrate the system
by the entropy based method. Lower row shows their respective entropy
distributions. These distributions vary considerably affecting the estimated
invariant angle. These results suggest the method is not repetitive when used
with real images.

We propose a new scheme to obtain θ (Fig. 6). The
result is a robust and repetitive calibration method even using
real data. Instead of using a single image as in Finlayson’s

algorithm, our proposal assumes a collection of real images
acquired with a monocular color sensor. These images are
corrected to linearize the sensor response and lens distortion.
Furthermore, the scheme includes an outlier rejection process
and a robust entropy density estimator.

Fig. 6. Algorithm to calibrate the camera using road images. Given a
group of images, the entropy distribution is calculated as the robust mean
over different entropy distributions. The invariant angle (θ ) is the minimum
of the final robustly–averaged entropy distribution.

As in the original method proposed by Finlayson, the
log-chromaticity image is projected onto a direction θ ∈
{0,1, ..,180}. After this, a process to remove outliers is done
for every projected data. Rejecting outliers is necessary since
subsequent processes use the range of the data to calculate
histogram bins. Having an outlier cause all the data get
compressed forming an erroneous histogram. Since I has
an unknown data distribution the Chebyshev’s theorem is
applied to calculate the lower and upper data boundaries [17].
Only 90% of this data range is used to form the histogram.
Scott’s Rule is used to form the appropriate bin width:

bin width = 3.5std(I)N− 1
3 , (1)

where N is the number of non–excluded pixels of the
invariant image.

Once the image has been rotated for every θ an entropy
distribution is formed for each image in the dataset. Orig-
inally, the desired angle was the one having the minimum
entropy value. However, in order to improve robustness, we
search for the angle which minimizes the averaged entropy
distribution of a group of images. This entropy distribution
is calculated averaging the entropy obtained for every image
using a robust mean approach: for every angle, only the
90% middle range is used to estimate the mean. The highest
and lowest values of entropy for each angle are excluded.
Although this method has a bigger computational cost, it is
less susceptible to extreme scores than the arithmetic mean.
Besides, it is intended to be done off–line and only takes
some seconds. Using this method a very strong minimum
is obtained which represent the desired invariant angle as
shown in results section.

III. THE HISTOGRAM-BASED ROAD CLASSIFIER

The road segmentation is performed using a seeded region
growing algorithm (SRG) [12], [13]. SRG is a common
technique in image segmentation which has been success-
fully used in other road segmentation schemes [3]. Given
a group of N classes Ci, i ∈ 1,2..N the key step of SGR is



defining the dissimilarity criterion δ used in each iteration
to decide whether a pixel p = (x,y) belongs or not to one
of these classes. The evaluated pixel is assigned to the class
having the lowest δ . This criterion is usually based on image
properties such as the mean value of the pixels p′ = (x′,y′)
which already belong to the i-th class. Initially, these classes
are formed by the seed pixels. Considering I as input data,
it would be:

δ (p,Ci) = |I(p)− 1
ℵCi

∑
p′∈Ci

I(p′)|. (2)

However, in order to reach real–time constraints some
systems use a fixed class representant (the original seed)
rather than the mean [3]. Concerning the road segmentation,
there are only two classes, the road and the background.
Nevertheless, if only some knowledge about the road is
assumed, a maximum dissimilarity value has to be defined
to consider p as a road pixel.

This is an elementary approach since it only uses first
order statistics to characterize the intra–region homogeneity.
However, decisions can not be always made with the help of
these statistics alone. For instance, a second-order statistic,
such as the covariance between sample vectors of different
classes is needed to characterize the feature distribution
within a region.

The novelty of our classifier is the use of a density function
as classification criterion. We use the road probability density
P(I(p)|Road) and a fixed threshold λ on this density to
decide whether a pixel belongs or not to the road class:

{
p is Road, if P(I(p)|Road)≥ λ ,

p is Background, otherwise.
(3)

Notice that our approach does not need the background
model, P(I(p)|Background). This is an advantage since
estimating it requires assumptions regarding the background
position in the image.

It remains to estimate P(I(p)|Road), i.e., the road model.
Although this can be solved using parametric methods such a
mixture of Gaussians (MoG) as in [18], we have considered
a non-parametric method to estimate it. In particular, we
have used the normalized histogram as an empirical form
of probability distribution for a random variable [19]. There
are two clear advantages of non-parametric methods: they
are fast in training and usage and they are independent to
the shape of data distribution. In addition, there are several
works which suggest the superiority of histograms compared
to MoG [8], [20], [21]. In our case, the road model has been
built using the surrounding region of several seeds placed
at the bottom part of I (Fig. 7). That is, our system uses
the only assumption that the bottom region of the image is
road. In fact, the lowest row of the image corresponds to a
distance of about 4 meters away from the vehicle, thus, it is
a reasonable assumption most of the time (other proposals
require to see the full road free [3] or all the possible road
appearances [8] at the start up of the system, which is more
unrealistic).

Fig. 7. Road model example: The model is built using the histogram
formed with the surrounding region (white blocks) of several seeds. We
have used nine seeds placed at the bottom part of I.

(a) (b) (c)

Fig. 8. Comparison of two different segmentations results when algorithms
are applied on I which is calculated from the original image as described in
Sect. II. (a) Original image, (b) segmentation result using standard seeded
region growing and the mean as dissimilarity criteria, (c) segmentation result
using the histogram–based region growing algorithm.

Fig. 8 shows the improvement obtained using the statistical
approach in comparison with common SRG. Our approach
clearly outperforms the other when seeds are placed on points
of I which do not properly represent the road surface.

IV. RESULTS

In this section we present qualitative results to validate the
proposal. We have started by calculating the characteristic
angle of the camera using a dataset which includes different
scenarios under different lighting and weather conditions
(Fig. 9). Results shown in Fig. 10 confirms the proposed
algorithm is robust and repetitive. The angle obtained for
our camera is θ = 44◦.

Fig. 9. Different images from the dataset used to calibrate the camera. The
images have been taken under different daytime and weather conditions such
as sunny or rainy days, and include different scenarios.



Fig. 10. Upper row shows the entropy obtained using the proposed
algorithm for each image in the upper row of Fig. 5. The algorithm is
more repetitive than the previous one. The lower row shows the averaged
entropy distribution used to obtain a more robust estimation of θ .

Given θ , the algorithm depicted in Fig. 11 has been
used to perform a frame by frame segmentation. Images
are acquired using the system described in Sect. II, and
cover approximately the nearest 80m ahead of the vehicle.
Each image is converted onto the invariant feature space
and the proposed region growing classifier is applied. The
result presents some small holes that are filled by standard
mathematical morphology.

Fig. 11. Algorithm used to validate the road segmentation proposal.

The algorithm has been tested using two different image
sequences. The former sequence was taken on a sunny day.
Its images include nonhomogeneous roads due to extreme
shadows and the presence of other vehicles. The latter was
taken on a rainy day and also includes nonhomogeneous
roads due to shadows, humidity and the presence of other
vehicles. Example results for both sequences are shown
in Fig. 12 and 13, respectively. Other results for images
with complex road shapes are shown in Fig. 14. Since the
algorithm does not use shape constraints it can deal with this
kind of situations. All these results suggest that a reliable
road segmentation algorithm is obtained by combining the
illuminant–invariant image space and a modified region
growing classifier. Road surface is well recovered most of
the time, with the segmentation stopping at road limits and
vehicles, and can deal with complex road shapes.

Currently, the average time required to process each frame
in non–optimized MatLab code is approximately 735ms at
full resolution on a Pentium-4 CPU at 2.8GHz. However, we
do not expect any trouble to reach real–time when written
in proper C++ code.

Fig. 12. Results from the sunny day sequence. This sequence includes
extreme shadows and other vehicles in the scene. Left column is the original
image which covers the nearest 80m ahead of the vehicle. Right column
shows in white the corresponding segmented road.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced a novel approach for road
segmentation. The approach enables robust segmentation de-
spite the presence of strong shadows under different weather
conditions. Furthermore, since the approach does not use
shape constraints it can deal with complex road shapes and
with the presence of other vehicles in the scene. The novelty
of the approach resides in using a shadow–invariant image
based on a preliminary, simple, camera calibration combined
with a statistical region growing algorithm. Our method
attenuates the influence of shadows from the beginning rather
than using a specific color space either in a complex algo-
rithm or with shadow post–processing. Moreover, it uses a
region growing algorithm which includes histogram–models
to decide whether a pixel belongs or not to the road surface.

Finally, referring to the required camera calibration using
real–data, we have improved the existing algorithm. A more
robust and repetitive calibration method has been obtained.
The modified algorithm has been successfully tested to



Fig. 13. Results from the rainy day sequence. Road surface is nonhomo-
geneous because it is non-uniformly soaked.

Fig. 14. Results with complex road shapes. Avoiding shape constraints
allows the algorithm to segment the road surface even when the road is
unstructured or with no clear shape.

generate the results discussed above.
In the future, we aim to address the challenging problem

of evaluating the segmentation results quantitatively [22].
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