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Edge-Based Color Constancy
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Abstract

Color constancy is the ability to measure colors of objects independent of the color of the light

source. A well-known color constancy method is based on the Grey-World assumption which assumes

that the average reflectance of surfaces in the world is achromatic. In this article, we propose a new

hypothesis for color constancy namely the Grey-Edge hypothesis, which assumes that the average edge

difference in a scene is achromatic. Based on this hypothesis, we propose an algorithm for color

constancy. Contrary to existing color constancy algorithms, which are computed from the zero-order

structure of images, our method is based on the derivative structure of images. Furthermore, we propose

a framework which unifies a variety of known (Grey-World, max-RGB, Minkowski norm) and the newly

proposed Grey-Edge and higher-order Grey-Edge algorithms. The quality of the various instantiations

of the framework is tested and compared to the state-of-the-art color constancy methods on two large

data sets of images recording objects under a large number of different light sources. The experiments

show that the proposed color constancy algorithms obtain comparable results as the state-of-the-art color

constancy methods with the merit of being computationally more efficient.
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I. INTRODUCTION

Color constancy is the ability to recognize colors of objects independent of the color of

the light source [1]. Obtaining color constancy is of importance for many computer vision

applications, such as image retrieval, image classification, color object recognition and object

tracking [2], [3], [4].

Approaches to this problem can be divided into two groups. For the first group, the aim is to

represent images by features which are invariant with respect to the light source, for example

within the context of image retrieval. Such invariant representation have been proposed by Funt

and Finlayson [5], Gevers and Smeulders [2], Geusebroek et al. [6], and Van de Weijer and

Schmid [7]. For these methods the actual estimation of the light source is not necessary. For

the second group of approaches, the aim is to correct images for deviations from a canonical

light source. Contrary to methods in the first group, solutions to this problem do estimate the

color of the light source, be it explicitly or implicitly. Methods, either propose a light source

estimation, after which the image is corrected [8], [9], [10] [11], or they directly estimate the

color corrected image [1], [12], after which the light source can be derived. If desired, illuminant

invariant features can subsequently be derived from the corrected image. In this paper we look

at color constancy approaches of the second group, i.e. methods from which a light source

corrected image can be computed.

One of the most successful color constancy methods is gamut mapping proposed by Forsyth [1].

The method is based on the observation that only a limited set of RGB values can be observed

under a given illuminant. The set of all possible RGB values for the canonical illuminant,

typically a white illuminant, is called the canonical gamut. This canonical gamut is proven to be a

convex hull in RGB space. The algorithm computes what transformations map an observed gamut

into the canonical gamut. From these transformations, the illuminant color is derived. The gamut

mapping algorithm provides among the best results in color constancy experiments [3]. Finlayson

et al. [12] improve the gamut mapping algorithm by restricting the transformations to be plau-

sible, meaning that only illuminants are allowed which correspond to existing illuminants. This

adaptation of the gamut algorithm, called GCIE for gamut constrained illumination estimation,

was shown to outperform the standard gamut algorithm. Further approaches to color constancy

include probabilistic approaches [10], and learning-based methods [11]. A framework which
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unifies multiple color constancy algorithms together is presented by Finlayson and Hordley [9].

They propose to estimate the illuminant from the correlation of the image data, and the prior

knowledge about which colors appear under a certain light.

Although the above described algorithms arrive at reasonable color constancy accuracy, a

drawback is that they are based on complex algorithms and all require an image data set with

known light sources for calibration. In this paper, we will focus on color constancy based on

less complex color constancy algorithms. To this end, fast algorithms are considered which are

based on low-level image features, such as max-RGB and Grey-World. Max-RGB is a simple

and fast color constancy algorithm which estimates the light source color from the maximum

response of the different color channels [13]. Another well-known simple color constancy method

is based on the Grey-World hypothesis [8], which assumes that the average reflectance in the

scene is achromatic. If the images under evaluation are part of a coherent image data base,

Gershon et al. [14] showed that assuming the average of a scene to be equal to the average

reflectance of the database, improves the results over the standard grey-world method. As an

example, they mention forest pictures full of green colors. In this case, most color constancy

methods will predict light sources biased towards the green color. The database-compensated

grey-world algorithm resolves this problem. These low-level methods are widely in use, even in

digital consumer cameras, due to their very low computational costs, i.e. taking the maximum

(max-RGB) or average pixel values (Grey-World).

Low-level approaches regained further interest recently after Finlayson and Trezzi [15] showed

that only with minor adaptations results are obtained which are similar to those of complex

color constancy algorithms. In fact, they showed that the max-RGB method and the Grey-World

method can be interpreted as the same algorithm applied with different instantiations of the error

function. The max-RGB method is shown to be equal to applying the L∞ Minkowski norm and

Grey-World is equal to using the L1 norm. They further show that the best color constancy

results are obtained with the L6 norm. Although these simple color constancy algorithms are

slightly outperformed by more elaborate methods, e.g. gamut mapping, they perform surprisingly

well while they are conceptually simpler (for an extensive evaluation of multiple color constancy

methods see [3], [15], [16]).

In this paper, we pursue this line of color constancy based on low-level image features.

Firstly, we propose the Grey-Edge hypothesis, which assumes that the average edge difference
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in the scene is achromatic. The method is based on the observation that the distribution of color

derivatives exhibits the largest variation in the light source direction. The Minkowski norm of

these derivatives is used to approximate this direction. The method is further extended to also

include higher-order derivatives. To our knowledge this is the first work in which color constancy

based on image derivatives is pursued. Finally, we propose a new framework of color constancy

based on low-level image features which includes the known algorithms (Grey-World, max-RGB,

Shades of Gray) and the newly proposed Grey-Edge and higher-order Grey-Edge algorithms.

The paper is organized as follows. In section 2, color constancy based on the Grey-World and

the max-RGB hypothesis is discussed. In section 3, we propose the Grey-Edge hypothesis, which

estimates the illuminant color based on the distribution of the color derivatives. We further extend

the color constancy framework of Finlayson and Trezzi [15] to also include color constancy

methods derived from the Grey-Edge hypothesis. We further extend it with a parameter to regulate

the amount of local averaging. Section 4, contains experiments on two large databases of images.

Section 5 contains a discussion of results and indications for future research. Section 6 finishes

with concluding remarks.

II. THE GREY-WORLD HYPOTHESIS

The image values, f = (R,G, B)T , for a Lambertian surface are dependent on the light source

e (λ), where λ is the wavelength, the surface reflectance s (λ) and the camera sensitivity functions

c (λ) = (R (λ) , G (λ) , B (λ))

f =
∫

ω

e (λ) s (λ) c (λ) dλ, (1)

where ω is the visible spectrum and bold fonts are applied for vectors. We assume that the scene

is illuminated by a single light source. The goal of color constancy is to estimate the light source

color e (λ), or its projection on the RGB-kernels,

e =




Re

Ge

Be




=
∫

ω

e (λ) c (λ) dλ, (2)

given the image values f (x), where x is the spatial coordinate in the image. The task of color

constancy is not attainable without further assumptions.
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Buchsbaum [8] proposes the Grey-World hypothesis which assumes that the average re-

flectance in a scene is achromatic. In the original work, the hypothesis is used to derive that the

average reflectance for the short-wave, middle-wave and long-wave regions is equal. Here we

employ a stronger definition of the achromatic reflectance of a scene (as also used in [15]),
∫

s (λ,x) dx∫
dx

= g (λ) = k, (3)

which avoids to make further assumptions. Buchsbaum [8], for example, needed to make further

assumptions on the basis functions for the camera sensitivities, the surface reflectances, and

the light source spectra. The constant k is between 0 for no reflectance (black) and 1 for total

reflectance (white) of the incident light, and the integral is over the domain of the scene. For

such a scene with achromatic reflectance, it holds that the reflected color is equal to the color

of the light source, since
∫
f (x) dx∫

dx
=

1∫
dx

∫ ∫

ω

e (λ)s (λ,x) c (λ) dλdx (4)

=
∫

ω

e (λ)c (λ)

(∫
s (λ,x)dx∫

dx

)
dλ (5)

= k
∫

ω

e (λ) c (λ) dλ = ke, (6)

where we applied the theorem of Fubini to exchange the order of integration. The normalized

light source color is computed with ê = ke/ |ke|.
Another popular color constancy method is called max-RGB [17]. It is based on the assumption

that the reflectance which is achieved for each of the three channels is equal:

max
x

f (x) = ke, (7)

where the max operation is executed on the separate channels

max
x

f (x) =
(
max

x
R (x) , max

x
G (x) , max

x
B (x)

)
. (8)

This method is sometimes explained as being derived from the white-patch hypothesis. Since a

white patch reflects all the incident light, its position in the image can be found by searching

for the maximum RGB values. It should be noted however that the max-RGB methods does

not require the maxima of the separate channels to be on the same location, hence it also

obtains correct illuminant estimation results when the maximum reflectance is equal for the

three channels.
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Recently Finlayson and Trezzi [15] showed that the Grey-World and the max-RGB algorithm

are two different instantiations of a more general color constancy algorithm based on the

Minkowski norm. Their method is called Shades of Grey and is computed by:
(∫

(f (x))p dx∫
dx

) 1
p

= ke. (9)

For p = 1, the equation is equal to the Grey-World assumption. For p = ∞, it is equal to color

constancy by max-RGB. They investigated the performance of the illuminant estimation as a

function of the Minkowski norm and found that the best results are obtained with a Minkowski

norm with p = 6.

A similar approach has been proposed by Barnard [18] to select the appropriate transformation

from the feasible set of transformations computed with Gamut mapping method. In the original

work, Forsyth [1] proposed to take the transformation belonging to the gamut with the maximum

volume. Instead, Barnard [18] considered various exponentials of the geometric mean of the

transformation vector to select the best transformation from the feasible set. He showed that

by varying the exponential, the selection criterion changes from taking the average over all

transformation to the maximum volume heuristic. Like in the case of the Shades of Grey method,

intermediate exponentials were shown to obtain better results.

As a final extension of the Grey-World algorithm, we consider local averaging. The norm

computation, as given by Eq. 9, is a global averaging operation, which ignores the important

local correlation between pixels. This local correlation can be used to reduce the influence of

noise. Local smoothing as a preprocessing step was proven to be beneficial for color constancy

algorithms, as discussed in Barnard’s study [3]. To exploit this local correlation, we introduce a

local smoothing with a Gaussian filter, Gσ, with standard deviation σ:
(∫

(fσ (x))p dx∫
dx

) 1
p

= ke, (10)

where fσ = f ⊗Gσ.

III. THE GREY-EDGE HYPOTHESIS

As an alternative to the Grey-World hypothesis, we propose the Grey-Edge hypothesis: the

average of the reflectance differences in a scene is achromatic
∫ |sσ

x (λ,x)| dx∫
dx

= g (λ) = k. (11)
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Fig. 1. Three acquisitions of the same scene under different light sources [19]. On the bottom line the color derivative

distributions are shown, where the axes are the opponent color derivatives and the surfaces indicate derivative values with

equal occurrence and darker surfaces indicating a more dense distribution. Note the shift of the orientation of the distribution

of the derivatives with the changing of the light source.

The subscript x indicates the spatial derivative at scale σ. With the Grey-Edge assumption, the

light source color can be computed from the average color derivative in the image given by:
∫ |fx (x)| dx∫

dx
=

1∫
dx

∫ ∫

ω

e (λ) |sx (λ,x)|c (λ) dλdx (12)

=
∫

ω

e (λ)

(∫ |sx (λ,x)|dx∫
dx

)
c (λ) dλ (13)

= k
∫

ω

e (λ)c (λ) dλ = ke, (14)

where |fx (x)| = (|Rx (x)| , |Gx (x)| , |Bx (x)|)T . The Grey-Edge hypothesis originates from the

observation that the color derivative distribution of images forms a relatively regular, ellipsoid-

like shape, of which the long axis coincides with the light source color [20]. In Fig. 1, the
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color derivative distribution is depicted for three images. The color derivatives are rotated to the

opponent color space as follows:

O1x = Rx−Gx√
2

O2x = Rx+Gx−2Bx√
6

O3x = Rx+Gx+Bx√
3

. (15)

In the opponent color space, O3 coincides with the white light direction. For the scene under

white light (the leftmost picture), the distribution of the derivatives are centered along the O3

i.e. the white-light axis. Once we change the color of the light source, as in the second and

third picture, the distribution of the color derivatives no longer align with the white-light axis. In

other words, color constancy based on the Grey-Edge assumption can be interpreted as skewing

the color derivative distribution such that the average derivative is in the O3 orientation.

Similar to the Grey-World based color constancy, the Grey-Edge hypothesis can also be

adapted to incorporate the Minkowski norm
(∫ |fσ

x (x)|p dx∫
dx

) 1
p

= ke. (16)

Color constancy based on this equation assumes that the p-th Minkowski norm of the derivative

of the reflectance in a scene is achromatic. We distinguish two special cases. For p = 1, the

illuminant is derived by a normal averaging operation over the derivatives of the channels. For

p = ∞, the illuminant is computed from the maximum derivative in the scene. The resemblance

between the color constancy derivation from the Grey-World and Grey-Edge hypothesis is

apparent. Both methods can be combined in a single framework of color constancy methods

based on low-level image features derived from the following general hypothesis:
(∫ ∣∣∣∣∣

∂nfσ (x)

∂xn

∣∣∣∣∣
p

dx

)1
p

= ken,p,σ. (17)

The division by
∫

dx has been incorporated into the constant k. Next to the already discussed

hypotheses (Grey-World, max-RGB, Minkowski norm, and the newly proposed Grey-Edge), it

is obvious that this framework also includes higher order based color constancy. High-order

derivatives have correspondences with the center-surround mechanism of the human eyes for

color constancy such as exploited in the well-known center-surround retinex algorithm [21]. The

influence of the color intensities could be weighted according to their distance to the center of

the receptive field generally calculated by a difference of Gaussian functions.
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The illuminant estimation of Eq. 17 describes a framework for low-level based illuminant

estimation. This framework produces different estimations for the illuminant color based on

three variables:

1) The order, n, of the image structure is the parameter determining if the method is a Grey-

World or a Grey-Edge algorithm. The Grey-World methods are based on the RGB values,

whereas the Grey-Edge methods are based on the spatial derivatives of order n. In this

paper, we will investigate higher-order based color constancy up to order n = 2.

2) The Minkowski norm p which determines the relative weights of the multiple measurements

from which the final illuminant color is estimated. A high Minkowski norm emphasizes

larger measurements whereas a low Minkowski norm equally distributes weights among

the measurements.

3) The scale of the local measurements as denoted by σ. For first or higher order estimation,

this local scale is combined with the differentiation operation computed with the Gaussian

derivative. For zero-order Grey-World methods, this local scale is imposed by a Gaussian

smoothing operation.

An overview of the instantiations of the illuminant estimation given by the framework of Eq. 17,

which are considered in this paper, is given in Table I.

An advantage of the color constancy methods based on Eq. 17 is that they are all based on

low computational demanding operations. In fact, the p-th Minkowski norm of (smoothed) RGB

values or derivatives can be computed extremely fast (even real-time on dedicated hardware).

Furthermore, the method does not require an image database taken under a known light source

for calibration as is necessary for more complex color constancy methods such as color gamut

mapping, and color by correlation [1], [15].

IV. EXPERIMENTS

In the previous section, a general formulation for color illuminant estimation has been proposed

based on low-level image features. In this section, the performance is tested for various parameter

settings on a set of colorful objects in a controlled indoor setting, and on a real-world data set

containing mainly outdoor scenes. For both data sets, the illuminant color of the scene is provided

as additional information (i.e. ground-truth).
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Fig. 2. Examples of the images in data set [19].

For evaluation the angular error between the estimated light source ee and the actual light

source el is used as an error measure:

angular error = cos−1 (êl · êe) , (18)

where the (̂.) indicates a normalized vector. For the three data sets tested here, we report

the median angular error, which is considered appropriate to assess the performance of color

constancy algorithms [22].

name symbol equation hypothesis

Grey-World e
0,1,0

(∫

f (x) dx

)

= ke the average reflectance in a scene is achromatic

max-RGB e
0,∞,o

(∫

|f (x)|∞ dx

) 1

∞ = ke the maximum reflectance in a scene is achromatic

Shades of Grey e
0,p,0

(∫

|f (x)|p dx

) 1

p = ke the pth-Minkowsky norm of a scene is achromatic

General Grey-World e
0,p,σ

(∫

|fσ (x)|p dx

) 1

p = ke the pth-Minkowsky norm of a scene is achromatic after local smoothing

Grey-Edge e
1,p,σ

(∫

|fσ

x
(x)|p dx

) 1

p = ke the pth-Minkowsky norm of the image derivative in a scene is achromatic

Max-Edge e
1,∞,σ

(∫

|fσ

x
(x)|∞ dx

) 1

∞ = ke the maximum reflectance difference in a scene is achromatic

2nd order Grey-Edge e
2,p,σ

(∫

|fσ

xx
(x)|p dx

) 1

p = ke the pth-Minkowsky norm of the second order derivative in a scene is achromatic

TABLE I

OVERVIEW OF THE DIFFERENT ILLUMINANT ESTIMATIONS METHODS TOGETHER WITH THEIR HYPOTHESES. THESE

ILLUMINANT ESTIMATIONS ARE ALL INSTANTIATIONS OF EQ. 17.
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Fig. 3. Median angular error of the general Grey-World, the first-order and the second-order Grey-Edge method as a function

of the Minkowski norm and local smoothing. The angular error axis is inverted for visualization purposes.

A. Controlled Indoor Image Set

First the proposed algorithms are tested on a large data set of colorful objects under different

light sources [19]. The set consists of images taken under 11 varying light sources of 30 different

scenes containing both matte and specular objects (see examples in Fig. 2). Several images where

found to be unusable, resulting in a data set of 321 images. Results of other color constancy

algorithms on this standard data set are available in [3], [12], [15], [22].

In Table II the results of multiple methods are summarized. Let us first consider the results

obtained by the Grey-World and its performance as a function of the Minkowski norm and

local smoothing. Both parameters significantly improve the performance. For the zero-order

instantiation, only varying the Minkowski norm reduces the error from 7.0◦ for Grey-World, to

3.7◦ for a Minkowski norm equal to 7. A further increase in performance of 15%, to an error of

3.2◦, is obtained by combining a simple local smoothing with σ = 1 and a Minkowski norm of

11 (indicated by e0,11,1). The illuminant estimations based on the grey-edge hypothesis, both the

first and second-order, exhibit similar behavior. Again, a significant drop in the error is obtained

by an appropriate choice of the Minkowski norm and local smoothing. The best results, an error

of 2.7◦, is obtained with the 2nd-order Grey-Edge method.

In Fig. 3 the median error is given as a function of the Minkowski norm and local smoothing

for the indoor image set. These figures show that a small local scale or a low Minkowski norm

perform significantly less. The performance increases by augmenting the Minkowski norm and
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indoor set symbol median

Grey-World e0,1,0 7.0

Max-RGB e0,∞,0 6.5

Shades of Grey e0,7,0 3.7

general Grey-World e0,11,1 3.2

Grey-Edge e1,7,4 3.2

2nd order Grey-Edge e2,7,5 2.7

Color by Correlation - 3.2

Gamut Mapping - 2.9

Neural Networks - 7.8

GCIE Version 3, 11 lights - 1.3

GCIE Version 3, 87 lights - 2.6

TABLE II

MEDIAN ANGULAR ERROR (DEGREES) ON INDOOR IMAGE DATA SET FOR VARIOUS COLOR CONSTANCY METHODS.

method local scale Minkowski norm

general Grey-World 1 ≤ σ ≤ 5 8 ≤ p ≤ 18

Grey-Edge 3 ≤ σ ≤ 5 6 ≤ p ≤ 14

2nd order Grey-Edge 4 ≤ σ ≤ 7 5 ≤ p ≤ 11

TABLE III

PARAMETER REGIONS FOR WHICH THE PERFORMANCE REMAINS WITHIN 10 % OF OPTIMAL PERFORMANCE AS GIVEN IN

TABLE II.

the local scale. The performance quickly levels off to a plateau where the performance changes

little. In Table III we have indicated for which regions of parameter settings a comparable

performance, i.e. within 10 % of the the optimal, is obtained.

Results of more complex color constancy methods, such as gamut mapping, neural network

algorithm, and color-by-correlation, have been reported in literature for the images in group

A [3], [12], [22]. These results have been also included in Table II. The more complex algorithms

obtained comparable results to the ones we reported. Only the CGIE algorithms obtains better

results with an error of 1.3◦. However, it should be noted that this algorithm uses the 11

illuminants which where used during the image acquisition as prior knowledge. If this prior
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Real-World set symbol median

Grey-World e0,1,0 7.3

Max-RGB e0,∞,0 6.7

general Grey-World e0,13,2 4.7

Grey-Edge e1,1,6 4.1

2nd order Grey-Edge e2,1,5 4.3

TABLE IV

MEDIAN ANGULAR ERROR (DEGREES) FOR VARIOUS COLOR CONSTANCY METHODS ON REAL-WORLD IMAGE SET.

knowledge is put aside, the performance drops to an error of 2.6◦ (GCIE Version 3, 87 lights).

B. Real-World Image Set

Next, the color constancy algorithms are tested on a database presented by Ciurea and Funt [23].

The database contains 11,000 images extracted from 2 hours of digital video. Both indoor and

outdoor scenes from a wide variety of locations are represented, see Fig. 5. A small grey sphere

was mounted onto the video camera, appearing for all the images in the right bottom corner of the

images. The sphere is exploited to estimate the illuminant color in the scene. This color illuminant

estimation is available with the database and is used as a ground truth in this experiment. The

original images were extracted from 15 different film clips taken at different locations. Because

of the high correlation between the images in the database, the experiments are performed on a

subset of 150 randomly chosen images containing ten images from each of the 15 video clips.

The pixels in the right bottom corner, which contains the grey sphere, are excluded from the

color constancy computation.

The results on the real-world data set are summarized in Table IV. Again, an appropriate choice

of the parameters significantly improves the results. Interestingly, the Grey-Edge performs best on

this set of real-world images. It improves the color constancy results with about 40% compared

to the Max-RGB.

In Fig. 5 corrected images based on Grey-World and Grey-Edge methods are given for the

real-world set. We applied the optimal parameters as given in Table IV. We often found a high

correlation between the two edge-based methods. However, the estimations based on the Grey-
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Fig. 4. Examples of the images from the real-world data set [23].

World and the two edge-based methods differ often. For example, in row one of Fig. 5, the

edge-based methods fail and their estimation of the light source is too blue, whereas the general

Grey-World obtains acceptable results. The second row shows an example where the large blue

sky results in an light source estimation which is much too blue for the Grey-World methods.

The edge-based methods obtain better results for this image. The last row shows an example

where the second order Grey-Edge method outperforms the other methods.

V. DISCUSSION

In the previous experiments, we have demonstrated that the proposed color constancy algo-

rithms obtain comparable results to more complex color constancy algorithms. However, the

optimal parameter setting vary for the different data sets. Important to note is the difference in

the Minkowski norm for the edge-based methods. On the real-world set, a Minkowski norm of

one is optimal whereas for the indoor sets a higher Minkowski norm between 6 and 15 is optimal.

This is probably caused by the black background present in the indoor scenes. For the edge based

methods, the illumination estimate is computed by averaging the edge-differences in a scene.

Depending on the Minkowski norm, more weight is given to prominent edges. For the edge-

based methods, the fact that the background in the images of sets A and B is black, significantly

increases the chance that the highest edge in the image is black-white. This explains why a

high Minkowski norm for these data sets is preferred. In case of the real-world data, the chance

that the highest edge-response is caused by a black-white edge is smaller and consequently it

is advantageous to take multiple measurements in the image into account. This is reflected in a

lower Minkowski norm.

June 14, 2007 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, DATE 114

Grey−Edge 2nd Order Grey−Edge      general Grey−Worldinput image Grey−World

0.05 0.15 0.200.08

0.21 0.18 0.02 0.05

0.30 0.17 0.14 0.08

Fig. 5. Color constancy results of Grey-World, general Grey-World, Grey-Edge and 2nd order Grey-Edge on real-world data set.

The angular error is indicated in the right bottom corner. The first row depicts a failure of the edge-based approaches whereas

the Grey-World methods give acceptable results. The second and third row show examples where the Grey-World methods fail

and the Grey-Edge methods obtain superior results.

The proposed Grey-Edge algorithm can be obtained from the Grey-World algorithm by simply

exchanging the RGB values for the spatial image derivatives. The zero-order image structure,

which provides the building stones for the Grey-World method, is replaced by the higher-order

image structure. In the case of the Grey-World, the change to higher orders proved beneficial

and the Grey-Edge methods outperform the Grey-World methods. To our knowledge this paper

is the first to propose color constancy derived from image derivatives. Methods such as Gamut

mapping, neural network based color constancy and color by correlation are all based on the zero

order structure of images. However, there is no restriction which prevents them from using the

higher-order structure of images, and it would be interesting to see how these methods performed

once based on the derivatives of images, or based on both zero-order and higher order structure

of images.
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Further work also includes searching for more elaborate ways to combine the low-level

building blocks proposed in this paper. Can we find ways to decide what method is expected

to perform best on a particular image? Furthermore, we believe that automatic estimation of

the parameters separately per image, instead of for the whole data set, will improve the color

constancy results, possibly within a learning context, such as proposed by Cardei et al. [11].

Another interesting research direction would be to constrain the possible illuminants to be

physically feasible as is done in [12].

VI. CONCLUSIONS

In this paper, we have investigated edge-based color constancy. The method is derived from the

Grey-Edge hypothesis which assumes that the average edge difference in a scene is achromatic. In

contrast to existing methods which are based on zero-order structure of the image, our method

is based on the higher order structure of images. Furthermore, we introduce a framework of

color constancy based on low-level image features which includes the known algorithms (Grey-

World, max-RGB, Minkowski norm) as well as the newly proposed Grey-Edge and higher-order

Grey-Edge algorithms. The quality of the various instantiations of the framework is tested on

two large data sets of images recording objects under a large number of different light sources.

The experimental results show that the newly proposed simple color constancy algorithms obtain

similar results as more complex state-of-the-art color constancy methods. Furthermore, the results

show that color constancy based on the Grey-Edge hypothesis obtains better results than those

obtained with the Grey-World method for real-world images.

VII. ACKNOWLEDGEMENT

This work is supported by the Marie Curie European Fellowship Program of the Commission

of the European Union. The authors thank Florian Ciurea for providing the real-world database.

REFERENCES

[1] D. Forsyth, “A novel algorithm for color constancy,” International Journal of Computer Vision, vol. 5, no. 1, pp. 5–36,

1990.

[2] T. Gevers and A. Smeulders, “Color based object recognition,” Pattern Recognition, vol. 32, pp. 453–464.

[3] K. Barnard, L. Martin, A. Coath, and B. Funt, “A comparison of computational color constancy algorithms-part ii:

Experiments with image data,” IEEE Trans. on Image Processing, vol. 11, no. 9, pp. 985–996, September 2002.

June 14, 2007 DRAFT



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. Y, DATE 116

[4] J.-P. Renno, D. Makris, T. Ellis, and G. Jones, “Application and evaluation of colour constancy in visual surveillance,” in

Joint IEEE Int. Workshop n Visual Surveillance and Performance Evaluation, Bejing, China, 2005.

[5] B. Funt and G. Finlayson, “Color constant color indexing,” IEEE Trans. on Pattern Analysis and Machine Intelligence,

vol. 17, pp. 522–529.

[6] J. Geusebroek, R. Boomgaard, S. Smeulders, and T. Gevers, “A physical basis for color constancy,” vol. 24, pp. 1653–1662,

2003.

[7] J. van de Weijer and C. Schmid, “Blur robust and color constant image description,” in International Conference on Image

Processing, 2006.

[8] G. Buchsbaum, “A spatial processor model for object colour perception,” Journal of the Franklin Institute, vol. 310, 1980.

[9] G. Finlayson, S. Hordley, and P. Hubel, “Color by correlation: A simple, unifying framework for color constancy,” IEEE

Trans. on Pattern analysis and Machine Intelligence, vol. 23, no. 11, pp. 1209–1221, Nov. 2001.

[10] D. Brainard and W. Freeman, “Bayesian color constancy,” Journal of the Optical Society of America A, vol. 14, no. 7, p.

1393.

[11] V. Cardei, B. Funt, and K. Barnard, “Estimating the scene illumination chromaticity using a neural network,” Journal of

the Optical Society of America A, vol. 19, no. 12, 2002.

[12] G. Finlayson and S. Hordley, “Gamut constrained illumination estimation,” International Journal of Computer Vision,

vol. 67, no. 1, pp. 93–109, 2006.

[13] E. Land and J. McCann, “Lightness and retinex theory,” The Journal of the Optical Society of America A., vol. 61, no. 1,

pp. 1–11, Jan. 1971.

[14] R. Gershon, A. D. Jepson, and J. K. Tsotsos, “From [r,g,b] to surface reflectance: Computing color constant descriptors

in images,” in Proc. of the 10th IJCAI, Milan, Italy, 1987, pp. 755–758.

[15] G. Finlayson and E. Trezzi, “Shades of gray and colour constancy,” in IS&T/SID Twelfth Color Imaging Conference, 2004,

pp. 37–41.

[16] K. Barnard, V. Cardei, and B. Funt, “A comparison of computational color constancy algorithms-part i: Methodology and

experiments with synthesized data,” IEEE Trans. on Image Processing, vol. 11, no. 9, pp. 972–984, September 2002.

[17] E. H. Land, “The retinex theory of color vision,” Scientific American, vol. 237, no. 6, pp. 108–120, 122–123, 126, 128,

1977.

[18] K. Barnard, “Improvements to gamut mapping colour constancy algorithms,” in Proc. of the European Conference on

Computer Vision, 2000, pp. 390–403.

[19] K. Barnard, L. Martin, B. Funt, and A. Coath, “A data set for colour research,” Color Research and Application, vol. 27,

no. 3, pp. 147–151, 2002.

[20] J. van de Weijer, T. Gevers, and A. Bagdanov, “Boosting color saliency in image feature detection,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 28, no. 1, pp. 150–156, 2006.

[21] E. Land, “An alternative technique for the computation of the designator in the retinex theory of color vision,” in Proceedings

of the National Academy of Sciences, vol. 83, 1986, pp. 3078–3080.

[22] S. Hordley and G. Finlayson, “Reevaluation of color constancy algorithm performance,” The Journal of the Optical Society

of America A., vol. 23, no. 5, pp. 1008–1020, May 2006.

[23] F. Ciurea and B. Funt, “A large image database for color constancy research,” in Proc. IS&T/SID’s Color Imaging

Conference, The SunBurst Resort, Scottsdale, Arizona, 2004, pp. 160–64.

June 14, 2007 DRAFT


