
 

Biological Journal of the Linnean Society

 

, 2007, 

 

90

 

, 211–237. With 11 figures

© 2007 The Linnean Society of London, 

 

Biological Journal of the Linnean Society, 

 

2007, 

 

90

 

, 211–237

 

211

 

Blackwell Publishing LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066© 2006 The Linnean Society of London? 2006
90?
211237
Original Article

USING CAMERAS TO STUDY ANIMAL COLORATION
M. STEVENS 

 

ET AL

 

.

 

*Corresponding author. Current address: Department of 
Zoology, University of Cambridge, Downing Street, Cambridge 
CB2 3EJ, UK. E-mail: ms726@cam.ac.uk

 

Using digital photography to study animal coloration

 

MARTIN STEVENS

 

1

 

*, C. ALEJANDRO PÁRRAGA

 

2

 

, INNES C. CUTHILL

 

1

 

, 
JULIAN C. PARTRIDGE

 

1

 

 and TOM S. TROSCIANKO

 

2

 

1

 

School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK 

 

2

 

Department of Experimental Psychology, University of Bristol, Woodland Road, Bristol BS8 1TN, UK

 

Received 19 May 2005; accepted for publication 1 March 2006

 

In understanding how visual signals function, quantifying the components of those patterns is vital. With the ever-
increasing power and availability of digital photography, many studies are utilizing this technique to study the con-
tent of animal colour signals. Digital photography has many advantages over other techniques, such as spectrometry,
for measuring chromatic information, particularly in terms of the speed of data acquisition and its relatively cheap
cost. Not only do digital photographs provide a method of quantifying the chromatic and achromatic content of spa-
tially complex markings, but also they can be incorporated into powerful models of animal vision. Unfortunately,
many studies utilizing digital photography appear to be unaware of several crucial issues involved in the acquisition
of images, notably the nonlinearity of many cameras’ responses to light intensity, and biases in a camera’s processing
of the images towards particular wavebands. In the present study, we set out step-by-step guidelines for the use of
digital photography to obtain accurate data, either independent of any particular visual system (such as reflection
values), or for particular models of nonhuman visual processing (such as that of a passerine bird). These guidelines
include how to: (1) linearize the camera’s response to changes in light intensity; (2) equalize the different colour
channels to obtain reflectance information; and (3) produce a mapping from camera colour space to that of another
colour space (such as photon catches for the cone types of a specific animal species). © 2007 The Linnean Society
of London, 
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INTRODUCTION

 

Investigations into the adaptive functions of animal
coloration are widespread in behavioural and evolu-
tionary biology. Probably because humans are ‘visual
animals’ themselves, studies of colour dominate func-
tional and evolutionary investigations of camouflage,
aposematism, mimicry, and both sexual and social sig-
nalling. However, with advances in our knowledge of
how colour vision functions and varies across species,
it becomes increasingly important to find means of
quantifying the spatial and chromatic properties of
visual signals as they are perceived by other animals
or, at the very least, in a manner independent of
human perception. This is nontrivial because colour is

not a physical property, but rather a function of the
nervous system of the animal perceiving the object
(Newton, 1718: ‘For the rays, to speak properly, are not
coloured’; Endler, 1990; Bennett, Cuthill & Norris,
1994). One way to produce an objective measure of the
properties of a colour signal is to measure surface
reflectance using spectrophotometry, which provides
precise information on the intensity distribution of
wavelengths reflected (Endler, 1990; Zuk & Decruye-
naere, 1994; Cuthill 

 

et al

 

., 1999; Gerald 

 

et al

 

., 2001;
Endler & Mielke, 2005). Reflectance data can also be
combined with information on the illuminant and the
photoreceptor sensitivities of the receiver (and, if
available, neural processing) to model the colours per-
ceived by nonhuman animals (Kelber, Vorobyev &
Osorio, 2003; Endler & Mielke, 2005). However, con-
ventional spectrometers provide only point samples,
and to characterize adequately the colour of a hetero-
geneous object requires multiple samples across an
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appropriately designed sampling array, such as
multiple transects or prespecified regions (Cuthill

 

et al

 

., 1999; Endler & Mielke, 2005). This not only has
a cost in terms of sampling time, but also the informa-
tion about spatial relationships between colours then
needs to be reconstructed from the geometry of the
sampling array (Endler, 1984) and the spatial resolu-
tion is generally crude. Spectrometry also usually
requires a static subject, either because of the need to
sample an array or because the measuring probe often
needs to be close to or touching the colour patch, a
particular problem in the field or with delicate
museum specimens. Focusing optics can obviate the
need for contact  with  the  animal  or  plant  and  offer
a  degree  of ‘remote sensing’ (Marshall 

 

et al

 

., 2003;
Sumner, Arrese & Partridge, 2005), but this approach
is rare.

An alternative to spectrometry is photography,
which has a long history of use in studies of animal
coloration (Thayer, 1896, 1909; Cott, 1940; Tinbergen,
1974; Pietrewicz & Kamil, 1979) but is becoming
increasingly used because of the flexibility and appar-
ent precision that digital imaging provides. Colour
change in the common surgeonfish (Goda & Fujii,
1998), markings in a population of Mediterranean
monk seals (Samaranch & Gonzalez, 2000), egg cryp-
sis in blackbirds (Westmoreland & Kiltie, 1996), the
role of ultraviolet (UV) reflective markings and sexual
selection in guppies (Kodric-Brown & Johnson, 2002),
and the functions of primate colour patterns (Gerald

 

et al

 

., 2001) comprise a few recent examples. Digital
photography bears many advantages over spectrome-
try, particularly in the ability to utilize powerful and
complex image processing algorithms to analyse
entire spatial patterns, without the need to recon-
struct topography from point samples. More obviously,
photographing specimens is relatively quick, allowing
rapid collection of large quantities of data, from unre-
strained targets and with minimal equipment. Imag-
ing programs can be used to obtain various forms of
data, including colour patch size and distribution
measures, diverse ‘brightness’ and colour metrics, or
broadband reflection values (such as in the long-,
medium-, and short wavebands). Video imaging can
provide temporal information too. Digital technology
also has the potential for manipulating stimuli for use
in experiments, with the most impressive examples
being in animations within video playback experi-
ments (Künzler & Bakker, 1998; Rosenthal & Evans,
1998), although there are problems with these meth-
ods that need to be understood (D’Eath, 1998; Fleish-
man 

 

et al

 

., 1998; Cuthill 

 

et al

 

., 2000a; Fleishman &
Endler, 2000).

Digital photography is increasingly incorporated
into many studies of animal coloration due to its per-
ceived suitability for objectively quantifying colour

and colour patterns. However, many studies appear to
be unaware of the complex image processing algo-
rithms incorporated into many digital cameras, and
make a series of assumptions about the data acquired
that are rarely met. The images recorded by a camera
are not only dependent upon the characteristics of the
object photographed, the ambient light, and its geom-
etry, but also upon the characteristics of the camera
(Barnard & Funt, 2002; Westland & Ripamonti, 2004).
Therefore, the properties of colour images are device-
dependent, and images of the same natural scene will
vary when taken with different cameras because the
spectral sensitivity of the sensors and firmware/
software in different cameras varies (Hong, Lou &
Rhodes, 2001; Yin & Cooperstock, 2004). Finally, the
images are frequently modified in inappropriate ways
(e.g. through ‘lossy’ image compression; for a glossary
of some technical terms, see Appendix 1) and ‘off-the-
shelf ’ colour metrics applied without consideration of
the assumptions behind them. At best, most current
applications of digital photography to studies of ani-
mal coloration fail to utilize the full potential of the
technology; more commonly, they yield data that are
qualitative at best and uninterpretable at worst. This
present study aims to provide an accessible guide to
addressing these problems. We assume the reader has
two possible goals: (1) to reconstruct the reflectance
spectrum of the object (maybe just in broad terms such
as the relative amounts of long-, medium- and short-
wave light; although we will also consider something
more ambitious) or (2) to model the object’s colour as
perceived by a nonhuman animal. Because we are con-
sidering applications of the accessible and affordable
technology of conventional digital colour cameras, we
are primarily focused on the human-visible spectrum
of 

 

c

 

. 400–700 nm, but we also consider UV imaging
and combining this information with that from a stan-
dard camera. Our examples come from an investiga-
tion of colour patterns on lepidopteran wings, and how
these might be viewed by avian predators. This is a
challenging problem (birds are potentially tetra-
chomatic and have an UV-sensitive cone type; Cuthill

 

et al

 

., 2000b), yet it is both tractable and informative,
because much of the avian colour world overlaps with
ours and birds are the focal organisms in many studies
of animal coloration (whether their sexual signals, or
the defensive coloration of their prey).

 

CONCEPTUAL BACKGROUND

 

The light coming from a point on an object, its radi-
ance spectrum, is a continuous distribution of differ-
ent intensities at different wavelengths. No animal
eye, or camera, quantifies the entire radiance spec-
trum at a given point, but instead estimates the inten-
sity of light in a (very) few broad wavebands. Humans
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and many other primates use just three samples, cor-
responding to the longwave (LW or ‘red’), mediumwave
(MW or ‘green’) and shortwave (SW or ‘blue’) cone
types in the retina (Fig. 1A); bees and most other
insects also use three samples, but in the UV, SW, and
MW wavebands; birds and some reptiles, fish and but-
terflies use four samples (typically UV, SW, MW, and
LW; Fig. 1B). A corollary of colour vision based on such
few, broadband, spectral samples is that the colour
appearance of an object can be matched, perfectly, by
an appropriate mixture of narrow waveband lights
(‘primary colours’) that differentially stimulate the
photoreceptors. Three primary colours [e.g. red, green,
and blue (RGB) in video display monitors] are
required for colour matching by normally sighted
humans. All that is required is that the mix of primary
colours stimulates the photoreceptors in the same way
as the radiance spectrum of the real object (without
actually having to mimic the radiance spectrum 

 

per
se

 

). The additive mixing of three primaries is the basis
of all video and cinematographic colour reproduction,
and colour specification in terms of the amounts of
these primaries, the so-called tristimulus values, lies
at the base of most human colour science (Wyszecki &
Stiles, 1982; Mollon, 1999; Westland & Ripamonti,
2004). That said, RGB values from a camera are not
standardized tristimulus values and so, although they
are easily obtained with packages such as Paintshop
Pro (Corel Corporation; formerly Jasc Software) or
Photoshop (Adobe Systems Inc.), simply knowing the
RGB values for a point in a photograph is not suffi-
cient to specify the colour of the corresponding point in
the real object.

An over-riding principle to consider when using dig-
ital cameras for scientific purposes is that most digital
cameras are designed to produce images that look
good, not to record reality. So, just as Kodachrome and
Fujichrome produce differing colour tones in ‘ana-
logue’ film-based cameras, each film type having its
own advocates for preferred colour rendition, the same
is true of digital cameras. The values of R, G and B
that are output from a camera need not be linearly
related to the light intensity in these three wave-
bands. In technical and high-specification cameras
they are, and the sensors themselves (the Charge Cou-
pled Devices; CCDs) generally have linear outputs. By
contrast, most cameras designed for non-analytical
use have nonlinear responses (Cardei, Funt & Bar-
nard, 1999; Lauziére, Gingras & Ferrie, 1999; Cardei
& Funt, 2000; Barnard & Funt, 2002; Martinez-Verdú,
Pujol & Capilla, 2002; Westland & Ripamonti, 2004).
This is a function of post-CCD processing to enhance
image quality, given the likely cross-section of print-
ers, monitors, and televisions that will be used to view
the photographs (these devices themselves having
diverse, designed-in, nonlinearities; Westland & Ripa-

monti, 2004). Most digital images will display well on
most monitors because the two nonlinearities approx-
imately cancel each other out. The first step in anal-
ysing digital images is therefore to linearize the RGB
values.

Even with RGB values that relate linearly to R, G,
and B light intensity, there is no single standard for
what constitutes ‘red’, ‘green’, and ‘blue’ wavebands;
nor need there be because different triplets of primary
colours can (and, historically, have been) used in
experiments to determine which ratios of primaries
match a given human-perceptible colour (Mollon,
1999; Westland & Ripamonti, 2004). The spectral sen-
sitivities of the sensors in a digital camera need not,
and usually do not, match those of human visual pig-
ments, as was the case with the Nikon 5700 Coolpix
camera primarily used in this study (Fig. 1C). The
RGB values in images from a given camera are specific
to that camera. Indeed, the values are not necessarily
even specific to a particular make and model, but
rather specific to an individual camera, because of
inherent variability in CCDs at the manufacturing
stage (Fig. 2). One can, however, map the camera RGB
values to a camera-independent, human colour space
(and, under some circumstances, that of another ani-
mal) given the appropriate mapping information.
Therefore, the mapping, through mathematical
transformation, of the camera-specific RGB values to
camera-independent RGB (or other tristimulus repre-
sentation) is the second crucial step in obtaining use-
ful data from a digital image. Furthermore, and often
as part of the transformation step, it will usually be
desirable to ‘remove’ variation due to the illuminating
light. The camera measures R, G, and B radiance,
which is the product of the reflectance of the object and
the three-dimensional radiance spectrum illuminat-
ing the object (often approximated by the irradiance
spectrum of the illuminant). The situation is rather
more complex underwater, where the medium itself
alters the radiance spectrum (Lythgoe, 1979) by wave-
length-dependent attenuation. However, an object
does not change colour (much) when viewed under a
blue sky, grey cloud, or in forest shade, even though
the radiance spectra coming from it changes consider-
ably. This phenomenon of ‘colour constancy’, whereby
the visual system is largely able to discount changes in
the illuminant and recover an object’s reflectance
spectrum, is still not fully understood (Hurlbert,
1999), but equivalent steps must be taken with digital
images if it is object properties that are of interest
rather than the radiance itself. Many digital cameras
allow approximations of colour constancy (white-point
balancing) at the point of image acquisition; for exam-
ple by selecting illuminant conditions such as sky-
light, cloudy, and tungsten. However, these settings
are an approximation and, in practice, their effects
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Figure 1.

 

A, normalized absorptance (equal areas under curves) of human cones. Absorbance (

 

N

 

) data from Dartnall,
Bowmaker & Mollon (1983) converted to absorptance (

 

P

 

) by the equation 

 

P 

 

=

 

 1 

 

−

 

 10

 

−

 

1NLS

 

, where 

 

L

 

 is the length of the cone
(20 

 

µ

 

m from Hendrickson and Drucker, 1992), and 

 

S

 

 is specific absorbance, 0.015/

 

µ

 

m

 

−

 

1

 

. B, normalized absorptance (equal
areas under curves) of starling cones to different wavelengths of light. From Hart, Partridge & Cuthill (1998). C, normalized
spectral sensitivity (equal areas under curves) of the sensors in the Nikon 5700 Coolpix camera used in the present study.
SW, shortwave; MW, mediumwave; LW, longwave; UV, ultraviolet.
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need to be eliminated because the effect of the illumi-
nant itself needs to be ‘removed’. Removing the effect
of the light source characteristics can thus be coupled
to eliminating any biases inherent in the camera’s
image processing (such as an over-representation of
some wavelengths/bands to modify the appearance of
the photograph; Cardei 

 

et al

 

., 1999; Finlayson & Tian,
1999; Lauziére 

 

et al

 

., 1999; Martinez-Verdú 

 

et al

 

.,
2002). This is essential if accurate data representing
the inherent spectral reflection characteristics of an
animal’s colour are to be obtained.

Many studies have used cameras to investigate ani-
mal colour patterns, but most fail to test their digital
cameras to determine if all of the above assumptions
are met and/or if the analysis yields reliable data
(Frischknecht, 1993; Villafuerte & Negro, 1998; Wede-
kind 

 

et al

 

., 1998; Gerald 

 

et al

 

., 2001; Kodric-Brown &
Johnson, 2002; Bortolotti, Fernie & Smits, 2003;
Cooper  &  Hosey,  2003);  for  a  rare  exception,  see
Losey  (2003).

We approach these problems in the sequence that a
scientist would have to address them if interested in
applying digital photography to a research question
about biological coloration. This study focuses on
obtaining data corresponding to inherent animal col-
oration, such as reflection data, and of obtaining data
relevant to a given receiver’s visual system. Either of
these data types may be more suitable depending
upon the research question. Reflection data does not
assume specific environmental conditions or a parti-
cular visual system viewing the object, and so data can
be compared across different specimens easily, even

when measured in different places. The lack of
assumptions about the receiver’s visual system, such
as photoreceptor types, distributions, abundances,
sensitivities, opponency mechanisms, and so on,
means the data ‘stand alone’ and can be analysed as
an inherent property of the animal or an object prop-
agating the signal. This is useful if a researcher sim-
ply wishes to know if, for example, individual ‘a’ has
more longwave reflection than individual ‘b’. Remov-
ing illumination information coincides with evidence
that many animals possess colour constancy. Con-
versely, simply taking reflection into account could be
misleading if what one really wants to know is how a
signal is viewed by a receiver. For example, if an indi-
vidual possesses a marking high in reflection of a spe-
cific waveband, but the environment lacks light in that
part of the spectrum or the receiver is insensitive to
that waveband, the region of high spectral reflection
will be unimportant as a signal. Therefore, it is often
necessary to include the ambient light characteristics
and, if known, information concerning the receiver’s
visual system. However, calculated differences in
photon catches of various photoreceptor types (for
example) between the different conditions do not nec-
essarily lead to differences in perception of the signal,
if colour constancy mechanisms exist. Furthermore, if
reflection information is obtained, this may be con-
verted into a visual system specific measure, either by
mapping techniques, as discussed here, or by calcula-
tions with illuminant spectra and cone sensitivities.
Therefore, although the present study deals with both
types of measurements, we focus more on the task of

 

Figure 2.

 

A plot of spectral sensitivity of two Nikon 5700 cameras for the longwave (LW), mediumwave (MW), and
shortwave (SW) channels. Even though the cameras are the same make and model, and were purchased simultaneously,
there are some (albeit relatively small) differences in spectral sensitivity.
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obtaining information about inherent properties of
animal coloration.

We assume that images are stored to a precision of
8 bits in each colour channel, such that intensity is on
a scale of 0–255; such ‘true colour’ images (2

 

8

 

 cubed, or

 

>

 

16 million colours) are the current norm. Although
some studies have used conventional (nondigital) cam-
eras to study animal coloration, we would advise
against doing so. Although conventional film can be
linearized, the corrections required from one batch of
film to the next are likely to differ, even from the same
manufacturer. Film processing techniques, such as
scanning to digitize the images, are also likely to intro-
duce considerable spatial and chromatic artefacts,
which need to be removed/prevented before analysis.

 

CHOOSING A CAMERA

 

We have mentioned the nonlinear response of many
digital cameras and although we show (below) how
linearization can be accomplished, nonlinearity is bet-
ter avoided. Other than this, essential features to look
for are (Table 1):

1. The ability to disable automatic ‘white-point balanc-
ing’. This is a software feature built into most cameras
to achieve a more natural colour balance under differ-
ent lighting conditions. The brightest pixel in any
image is set to 255 for R, G, and B (i.e. assumed to be
white). Obviously, for technical applications where the
object to be photographed has no white regions, this
would produce data in which the RGB values are inap-
propriately weighted.
2. A high resolution. The resolution of a digital image
is generally limited by the sensing array, rather than
the modulation transfer function of the lens. Essen-
tially, the number of pixels the array contains deter-
mines resolution, with higher resolution cameras able
to resolve smaller colour patches allowing more detail
to be measured, or the same amount of relative detail
measured from a further distance from the subject.

Also important is the Nyquist frequency (half that of
the highest frequency spatial waveform), which is the
highest spatial frequency where the camera can still
accurately record image spatial detail; spatial pattern-
ing above this frequency results in aliasing, which
could be a problem for patterns with a very high level
of spatial detail (Efford, 2000). There is no set rule as
to what a minimum level of pixels in an image should
be; if it is possible to work in close proximity to the
object, then even a 0.25-megapixel image may be suf-
ficient. The problem is to avoid Nyquist limit problems,
where the pixels need to be less than half the size of
the smallest detail in the image that you are interested
in. Each pixel on a digital camera sensor contains a
light sensitive photodiode, measuring the intensity of
light over a broadband spectrum. A colour filter array
is positioned on top of the sensor to filter the red, green,
and blue components of light, leaving each pixel sen-
sitive to one waveband of light alone. Commonly, there
is a mosaic of pixels, with twice as many green sensi-
tive ones as red or blue. The two missing colour values
for each individual pixel are estimated based on the
values of neighbouring pixels, via so-called demosaic-
ing algorithms, including Bayer interpolation. It is not
just the number of pixels a camera produces (its geo-
metrical accuracy) that matters, but also the quality
of each pixel. Some cameras are becoming available
that have ‘foveon sensors’, with three photodetectors
per pixel, and can thus create increased colour accu-
racy by avoiding artefacts resulting from interpolation
algorithms. However, due to the power of the latest
interpolation software, colour artefacts are usually
minor, especially as the number of pixels increases,
and foveon sensors may have relatively low light sen-
sitivity. Higher quality sensors have a greater dynamic
range, which can be passed on to the images, and some
cameras are now being produced with two photodiodes
per pixel: one of which is highly sensitive to low light
levels, the other of which is less sensitive and is used
to estimate higher light levels without becoming sat-
urated. A distinction should also be made between the

 

Table 1.

 

Desirable characteristics when purchasing a digital camera for research

Attribute Relative importance

High resolution (e.g. minimum of 5 megapixels) Medium (depends upon the complexity/size
of the object photographed)

Manual white balance control High
Macro lens Medium
Ability to save TIFF/RAW file formats High
Manual exposure control High
Remote shutter release cable capability Low
Ability to change metering method Medium
Optical zoom Medium
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number of overall pixels and the number of effective
pixels. A conventional 5 megapixel camera actually
may output 2560 

 

×

 

 1920 pixel images (4915 200 pixels)
because some of the pixels in the camera are used for
various measurements in image processing (e.g. dark
current measurements).
3. The ability to store images as uncompressed TIFF
(Tagged Image File Format) or RAW files. Some mid-
range cameras allow storage as RAW files, others do
not but often allow images to be saved as TIFF files.
This is something to determine before purchasing a
camera. Other file types, in particular JPEGs (Joint

Photographic Experts Group), are unsuitable because
information is lost in the compression process. JPEG
compression is of the ‘lossy’ type, which changes the
data coming from the CCD array, and where the lost
information cannot be recovered. This is often unde-
tectable to the human eye, but introduces both spatial
and chromatic artefacts in the underlying image data,
particularly if the level of compression is high (for two
simple illustrations, see Figs 3, 4). JPEGs compress
both the colour and spatial information, with the spa-
tial information sorted into fine and coarse detail. Fine
detail is discarded first because this is what we are

 

Figure 3.

 

Four images of the hind left spot on the emperor moth 

 

Saturnia pavonia

 

 illustrating the effects of compression
on image quality. A, an uncompressed TIFF image of the original photograph. B, a JPEG image with minimal compression
(10%). C, a JPEG image with intermediate compression (50%), which still appears to maintain the original structure of
the image, but careful examination of the image’s spatiochromatic content shows inconsistencies with the original TIFF
file. D, a JPEG image with maximal compression (90%) showing severe spatial and chromatic disruption.

A B

C D
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less sensitive to. For example, Gerald 

 

et al

 

. (2001)
used digital images to investigate the scrota of adult
vervet monkeys 

 

Cercopithecus aethiops sabaeus

 

. They
saved the images as JPEG files but, because the level
of compression of the files is not stated, it is impossible
to assess the degree of error introduced. Camera man-
uals may state the level of compression used on differ-
ent settings, and image software should also state the
level of compression used when saving JPEG files.
However, even if the level of compression is known,
the introduction of artefacts will be unpredictable and
so JPEG files should be avoided. Lossy compression is
different from some other types of compression, such
as those involved with ‘zipping’ file types, where all
the compressed information can be recovered. Uncom-
pressed TIFF files are loss-less, but TIFF files can be
compressed in either lossy or loss-less ways, and, like
JPEGs, TIFFs can be modified before being saved in
other ways if the necessary camera functions are not
turned off (such as white-point balancing). For most
cameras, a given pixel on a CCD array has only one
sensor type (R, G, or B), and interpolation is required
to estimate the two unknown colour values of a given
pixel. Both JPEGs and TIFF files undergo interpola-
tion at the stage of image capture by the camera’s
internal firmware, which cannot be turned off, and the

method is usually opaque to the user. Some cameras
have the capacity to store RAW images. RAW files are
those that are the direct product of the CCD array,
and, unlike TIFFs or JPEGs which are nearly always
8-bit, RAW files are usually 12- or 16-bit. This means
they can display a wider variety of colours and are
generally linear because most CCDs are linear, and
undergo none of the processing potentially affecting
other file types. The RAW files from the camera in our
study occupy approximately half of the memory of an
uncompressed TIFF file because even though the TIFF
file only retains 8-bits of information, it occupies twice
the storage space because it has three 8-bit colour
channels, as opposed to one 12-bit RAW channel per
CCD pixel. However, before being useable as an image,
RAW files must also go through interpolation steps in
the computer software into which the files are read.
Thumbnails of unprocessed RAW files in RGB format
can be read into some software, but these are rela-
tively useless, being only 160 

 

×

 

 120 pixels in resolu-
tion, compared to 2560 

 

×

 

 1920 pixels for the processed
images. The conversion to another file type can pro-
ceed with no modification, just as would be the case if
taking photos directly as uncompressed TIFF images.
One problem with RAW files is that they can differ
between manufacturers and even between camera

 

Figure 4.

 

Grey values measured when plotting a transect across a grey scale step image with increasing values from left
to right. Grey values start at 0 on the left of the series of steps and increase in steps of 25 to reach values of 250 on the
right. Plotted on the graph are the values measured for images of the steps as an uncompressed TIFF file, and JPEGs
with ‘minimum’ (10%), ‘intermediate’ (50%), and ‘maximum’ (90%) levels of compression. Values of 30, 60, and 90 have
been added to the JPEG files with minimum, intermediate and maximum levels of compression to separate the lines
vertically. Note that, as the level of compression increases, the data measured are more severely disrupted, particularly
at the boundary between changes in intensity. In the case of complex patterns, the disruption to the image structure means
that measurements at any point in the image will be error prone.
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models, and so special software and/or ‘plug-ins’ may
be needed, or the software provided by the manufac-
turer must be used, to convert the images to other file
formats. Unfortunately, the interpolation process is
rarely revealed by the manufacturer, and may intro-
duce nonlinearities into the file. It is possible to write
custom programmes to read RAW files into software
programmes and this has the advantage that the user
can then either use the RAW data directly or decide
exactly what method should be used to interpolate the
RAW file into a TIFF file. Once our RAW files had been
processed by software supplied by the manufacturer,
they had almost identical properties to the uncom-
pressed TIFF files (the introduction of nonlinearities
could be due to the software processing or a nonlinear
CCD). Some imaging software should allow the RAW
files to be processed into TIFFs without introducing
nonlinearities. RAW files can also be converted into
16-bit TIFF files, which show higher accuracy than 8-
bit TIFFs and may highlight extra detail. These 16-bit
file types occupy approximately 30 Mb, so consider-
able storage space is needed to keep a large number
of these files. However, relatively more unprocessed
RAW files can be stored than TIFFs on a memory card.
4. The capacity for manual exposure control or, at the
very least, aperture priority exposure. The calibration
curve may vary with different aperture settings and
focus distances so, to avoid the need for a large num-
ber of separate calibration estimates, it is more con-
venient to fix the aperture at which photographs are
taken and work at constrained distances. If the aper-
ture value is increased, more light from the edge of
the lens is allowed through, and these rays usually do
not converge on the same point as those rays coming
through the centre of the lens (spherical aberration).
This is especially true for colours near the edges of the
human visible spectrum. By keeping the aperture con-
stant and as small as possible (large F-numbers), this
problem is unlikely to be significant.
5. The ability to take a remote shutter release cable
(manual or electronic) to facilitate photography at
long integration times (slow shutter speeds) when
light levels are low.
6. Known metering characteristics. Many cameras
have multiple options for light metering, such that the
exposure is set dependent upon average intensity
across the entire field imaged, only the intensity at
the central spot, or one or more weighted intermedi-
ates. Knowing which area of the field in view deter-
mines exposure facilitates image composition.
7. Optical zoom can be useful, particularly if the level of
enlargement can be fixed manually, so it can be repro-
duced exactly, if needed, each time the camera is turned
on. Digital zoom is of no value because it is merely
equivalent to postimage-capture enlargement and so
does not change the data content of the area of interest.

8. Good quality optics. One problem with lenses is
chromatic aberration, in which light of different wave-
lengths is brought to a focus in a different focal plane,
thus blurring some colours in the image. This can be
caused by the camera lens not focusing different wave-
lengths of light onto the same plane (longitudinal chro-
matic aberration), or by the lens magnifying different
wavelengths differently (lateral chromatic aberration).
Párraga, Troscianko & Tolhurst (2002) tested camera
lenses of the type in our Nikon camera, by taking
images in different parts of the spectrum through nar-
rowband spectral filters and verified that the optimal
focus settings did not vary significantly, meaning that
the lenses did not suffer from this defect. Narrow
bandpass filters selectively filter light of specific nar-
row wavebands (e.g. from 400 to 410 nm). Using a set
of these filters enables images to be obtained where
the only light being captured is in a specific waveband.
Other lenses may not be as good, especially if they
have a bigger optical zoom range. Therefore, aside from
the requirement to produce images free from problems
such as spherical aberration, the most important issue
is to minimize chromatic aberration. As with Párraga

 

et al

 

. (2002), a good test for this is to take images of a
page of text under white light through narrowband
red and blue filters without changing the focus (this
requires manual focus). If there is no chromatic aber-
ration, then both images should be equally sharp. A
more formal test is to measure the Fourier spectrum
of the two images; if there is a good correction for
chromatic aberration the two spectra should be the
same. Furthermore, Hong 

 

et al

 

. (2001) noted that, in
some camera lenses, light is not uniformly transmitted
across its area, with the centre of the lens transmitting
more light. This would result in the pixels in the centre
of the image being over-represented in terms of inten-
sity. This potential problem should be tested for. Losey
(2003) also found that the edges of images were
slightly darker. In some situations, a good macro lens
is also highly desirable because this allows close up
images of complex patterns to be obtained. Without a
macro lens, it may not be possible to move the camera
close enough to resolve complex patterns. Some cam-
eras even come with a ‘super’ macro lens, such as the
Fujifilm FinePix S7000, which allows photographs to
be taken up to 1 cm from the object.
9. The capacity to take memory cards of high capacity.
TIFF files are very large (

 

c

 

. 15 Mb for an image 2560
by 1920 pixels), so that a 512 Mb card that can store
over 200 medium-compression JPEGs will only store
34 TIFFs.

 

IMAGE COLOUR VALUES

 

The colour values to be calculated and used in any
analysis are stored as RGB values in TIFF files auto-



 

220

 

M. STEVENS 

 

ET AL

 

.

 

© 2007 The Linnean Society of London, 

 

Biological Journal of the Linnean Society, 

 

2007, 

 

90

 

, 211–237

 

matically when a camera saves an image or when a
file is converted into a TIFF image from its RAW file
format and, if 8-bit, this is on a scale of 0–255. The
camera or computer conversion software may have
the option to save the image as either 8-bit or 16-bit,
but 8-bit is currently more standard. The steps that
follow to calculate values corresponding to, for exam-
ple, reflection or photon catches are spelt out below. If
adjusting an image with a standard or set of stan-
dards to recover reflectance, then the standards
should have a flat reflectance spectrum (i.e.
R 

 

=

 

 G 

 

=

 

 B); therefore, the image values are adjusted
so that R 

 

=

 

 G 

 

=

 

 B in the linearized picture. This will
give an image in which the pixels have the correct rel-
ative spectral reflectance. At this point, a crucial issue
to emphasize is that many image software pro-
grammes offer the option to convert values into other
colour spaces, such as HSB (three images correspond-
ing to hue, saturation, and brightness). Conversions
such as HSB should be avoided and we strongly
advise against this type of conversion. HSB is a
human-vision-specific colour space, and even in terms
of human vision, it is unlikely to be accurate; a more
widely used and well tested colour space for humans
is the Commission Internationale de l’Éclairage (CIE)
Laboratory colour space, which may in some cases be
appropriate. There are numerous pitfalls with using
methodological techniques based on human vision to
describe animal colours (Bennett 

 

et al

 

., 1994; Stevens
& Cuthill, 2005).

 

SOFTWARE

 

One of the biggest advantages of using images to anal-
yse coloration is the existence of a huge number of
flexible and powerful software programmes, coupled
with the option to write custom programmes in a
variety of programming languages. Some of the pro-
grammes available to deal with image processing are
standard and quite affordable, such as Paintshop Pro
or Photoshop, which can be used for a range of simple
tasks. However, there are a range of other options
available, including the popular freeware programmes
such as the open-source image editor GIMP and the
Java-based (Sun Microsystems, Inc.; Efford, 2000)
imaging programme ‘Image J’ (Rasband, 1997–2006;
Abràmoff, Magalhäes & Ram, 2004), with its huge
variety of available ‘plugins’, written by various people
for a range of tasks. Image J also permits custom pro-
grammes written in the language Java to accompany
it. For example, a plugin that we used, called ‘radial
profile’, is ideal for analysing lepidopteran eyespots,
and other circular features. This works by calculating
the normalized intensities of concentric circles, start-
ing at a central point, moving out along the radius.
Figure 5 gives an example of this plug-in, as used to

analyse an eyespot of the ringlet butterfly 

 

Aphantopus
hyperantus

 

.
The programme MATLAB (The Mathworks Inc.) is

also an extremely useful package for writing calibra-
tions and designing sophisticated computational mod-
els of vision. This is a relatively easy programming
language to learn, is excellent for writing custom and
powerful programmes, and, due to its matrix mani-
pulation capabilities, is excellent for dealing with
images (digital images are simply matrices of num-
bers). MATLAB can also be bought with a range of
‘toolboxes’ that have numerous functions already writ-
ten for various tasks, including image processing, sta-
tistics, and wavelet transformations. MATLAB has
available an Image Processing Toolbox with a range of
useful functions (Hanselman & Littlefield, 2001; Hunt

 

et al

 

., 2003; Gonzalez, Woods & Eddins, 2004; West-
land & Ripamonti, 2004).

 

HOW FREQUENTLY SHOULD CALIBRATIONS 
BE UNDERTAKEN?

 

The frequency with which calibrations should be
undertaken depends upon the specific calibration
required. For example, determining the spectral sen-
sitivity of a camera’s sensors need only be performed
once because this should not change with time as long
as the lens on the camera is not changed, in which case
recalibration may be needed. Additionally, the calcu-
lation of the camera’s response to changing light levels
and the required linearization need only be performed
once because this too does not change with time. How-
ever, if calculating reflection, the calibration needs to
be performed for each session/light setup because the
light setup changes the ratio between the LW, MW,
and SW sensors.

 

CALIBRATING A DIGITAL CAMERA

 

There are several steps that should be followed when
wishing to obtain values of either reflection or data
corresponding to an animal’s visual system. To obtain
values of reflection:

1. Obtain images of a set of reflectance standards
used to fit a calibration curve.

2. Determine a calibration curve for the camera’s
response to changes in light intensity in terms of
RGB values.

3. Derive a linearization equation, if needed, to lin-
earize the response of the camera to changes in
light intensity, based on the parameters deter-
mined from step 2.

4. Determine the ratio between the camera’s response
in the R, G, and B channels, with respect to the
reflectance standards, and equalize the response of
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Figure 5.

 

Results from a radial profile analysis performed upon one eyespot of the ringlet butterfly 

 

Aphantopus hyper-
antus

 

, illustrating the high percentage reflectance values obtained for the centre of the spot and the ‘golden’ ring further
from the centre, particularly in the red and green channels, and the lack of an eyespot in the ultraviolet (UV).
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the different colour channels to remove the effects
of the illuminating light and any biases inherent in
the camera’s processing.

If data corresponding to an animal’s visual system is
required (such as relative photon catches):

1. Obtain photographs of reflectance standards
through a set of narrow band-pass filters, at the
same time as measuring the radiance with a spec-
trophotometer.

2. Determine the linearity of the camera’s response to
changing light levels and, if necessary, derive a
linearization. Furthermore, using radiance data
and the photographs through the band-pass filters,
determine the spectral sensitivity of the camera’s
different sensor types.

3. Using data on the spectral sensitivity of the cam-
era’s sensors, and the sensitivity of the animal’s
sensors to be modelled, produce a mapping based
on the response to many different radiance spectra
between the two different colour spaces.

These different steps are discussed in detail below.

LINEARIZATION

If a set of grey reflectance standards is photographed
and then the measured RGB values are plotted
against the nominal reflectance value, the naïve
expectation would be of a linear relationship (Lauziére
et al., 1999). One might also expect the values

obtained for each of the three colour channels to be the
same for each standard because greys fall on the ach-
romatic locus of R = G = B (Kelber et al., 2003). How-
ever, as mentioned previously, many cameras do not
fulfil such expectations, and they did not for the Nikon
5700 Coolpix camera that we used in our study (Fig. 6;
see Appendix 2). A different nonlinear relationship
between grey value and nominal reflection for each
colour channel requires that the linearizing transfor-
mation must be estimated separately for each chan-
nel. Also, it means that an image of a single grey
reflection standard is insufficient for camera calibra-
tion; instead a full calibration experiment must be
performed.

We used a modification of the linearization protocols
developed by Párraga (2003) and Westland & Ripam-
onti (2004). The first step is to photograph a range of
standard greyscales of known reflectance value. West-
land &  Ripamonti  (2004)  used  the  greyscale  of
the Macbeth ColorChecker chart (Macbeth, Munsell
Color Laboratory). In the present study, because we
required reflection standards suitable for UV photo-
graphy (see below), we used a set of Spectralon diffuse
reflectance standards (Labsphere Inc.). These stan-
dards, made of a Teflon microfoam, reflect light of
wavelengths between 300 nm and 800 nm (and
beyond) approximately equally, and are one of the
most highly Lambertian substances available over
this spectral range. The standards had nominal per-
centage reflection values of 2%, 5%, 10%, 20%, 40%,

Figure 6. The relationship between the grey scale value measured for a set of seven Spectralon reflectance standards
from raw digital TIFF file images and the nominal reflection value, showing a curved relationship for the R, G, and B
data. The ‘required’ line illustrates values that should be measured if the camera’s response was linear and the three
channels equally stimulated. LW, longwave; SW, shortwave; MW, mediumwave.
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50%, and 75%. If the object of the study, as in Westland
& Ripamonti (2004: chapter 10) and the present study,
is to recover reflectance data from the images, then
the nature of the illuminant, as long as it is stable over
time (Angelopoulou, 2000) and of adequate intensity
in all wavebands, is irrelevant. We used a 150-W
Xenon arc lamp (Light Support), which was allowed to
warm up and stabilize for 1 h before the calibration
exercise, and then tested for stability before and after
the calibration. In Párraga (2003), the goal was to
recover spectral radiance; thus, at the same time as
photographing the standards, the radiance of each
greyscale patch was measured using a spot-imaging
telespectroradiometer (TopCon Model SR1, Calibrated
by the National Physical Laboratory). After that, each
sensor’s grey level output was plotted against a mea-
sure of the total spectral radiance that stimulated it,
at various shutter speeds. Because radiance, unlike
reflectance, varies with the illuminant, Párraga (2003)
repeated the calibration process under a variety of
lighting conditions. If recovering radiance is the objec-
tive, it is important to determine the calibration curve
appropriate to the conditions under which the
research photographs will be taken. Objects will give
problems of metamerism if their reflectance spectra
are ‘spiky’ or, at least, very uneven. It is therefore
important to check the linearization calibration works
for objects from the same class as those being
measured.

The next step is to determine the function relating
the intensity values (0–255) for each of the RGB sen-
sors to true reflection, or radiance, as appropriate, as
measured spectrometrically. Many studies describe
power functions of the same family as those relating
intensity to voltage in cathode ray tube monitors;
these are so-called gamma functions of the type:
Output = constant × (inputγ). For this reason, the lin-
earization process is sometimes referred to as ‘gamma
correction’. The term gamma function means different
things in film photography, digital photography, and
algebraic mathematics, and so is a potentially confus-
ing term that is best avoided. Because the response of
the camera’s sensors is likely to be camera specific, we
recommend determining the curve that best fits the
data. Although many curves will no doubt fit the data
very closely (e.g. a Modified Hoerl and Weibull model,
amongst others, fitted our reflection data very well), it
is preferable to choose a function that is the same for
each of the camera’s three sensors; this makes produc-
ing the calibrations much easier because the calibra-
tion equation will be of the same form for each
channel, with only the parameters varying. If there
are several curves that all fit the data well, then choos-
ing the simplest equation and with the lowest number
of parameters makes calibration much easier. The
equation of the curve to produce a calibration should

be reversible, favouring a simpler model, because try-
ing to revert a high-order polynomial, for example, can
be very complicated. We found that the function below
fitted our camera well:

QS = a × bP (1)

where Qs is the photon catch of a given sensor S (R, G,
or B), P the value of the pixel of sensor S, and a and b
are constants. Qs is the product of the measured radi-
ance spectrum and the sensor’s spectral sensitivity,
but it is rare for manufacturers to publish such data.
Westland & Ripamonti (2004) mention that luminance
is sometimes used as an approximation, on the
assumption that for a grey standard the radiance in
all three channels should be the same. However, this
assumes a spectrally flat light source, which no light
source ever really is. Therefore, the spectral sensitiv-
ity needs to be measured directly, by measuring the
camera RGB values when imaging greyscales illumi-
nated through narrow band-pass filters. In this way,
one can construct spectral sensitivity curves analo-
gous to the spectral sensitivity curves of animal pho-
toreceptors (Fig. 1). Párraga (2003) provides technical
details on how to achieve this.

In Párraga’s (2003) linearization exercise, the value
of b in the equation above was found to be similar for
all conditions tested (sunny, cloudy, and incandescent
artificial light) and all sensors. Thus, the value of a
defined each curve. Because the linearized values for
R, G, and B represented radiance in the wavebands
specific to each sensor, the photograph’s exposure was
also taken into account in the calibration process (a
longer exposure time representing lower radiance).
Therefore, the following three equations were derived
to linearize and scale each RGB value to radiance
measures, where QS is the radiance measured by sen-
sor S, b and the ai are the coefficients estimated by
ordinary least-squares regression of log-transformed
values, c is a value to account for inherent dark cur-
rent (see below) in the camera, and t is the integration
time the photograph was taken on [1/shutter speed]:

QR = a1(bR − c1)/t (2)

QG = a2(bG − c2)/t (3)

QB = a3(bB − c3)/t (4)

If the object of the research is to obtain reflection
rather than radiance measures, then t can be ignored
and functions such as eqn. 1 could be used, provided
that t is constant and measurements of known reflec-
tion standards are also made. Because the reflection
values of greyscales are, by definition, equal in all
wavebands, sensor spectral sensitivity does not in
principle need to be known for linearization in relation
to reflection, although in practice, one would want to
know the spectral sensitivity curves for the camera’s
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sensors for the data to be readily interpreted (in terms
of the sensitivity corresponding to each sensor). In the
case of either radiance or reflection calibration, one
should check that it is valid to force the calibration
curve through the origin. All digital imaging sensors
have associated with them an inherent ‘dark current’
(due to thermal noise in the sensors) (Efford, 2000;
Stokman, Gevers & Koenderink, 2000; Barnard &
Funt, 2002; Martinez-Verdú et al., 2002), so that a set
of images with the lens cap on may not produce mea-
surements of zero. As with spectrometry, the dark cur-
rent can be estimated by taking images at the same
exposure settings as calibration photos, and using the
pixel values as an offset for the curve. One should also
check whether increasing the integration time, or
temperature changes within the range at which the
camera will be used for data collection, alters these
background dark current values.

Figure 7 provides an example of linearization per-
formed on the RGB values from photographs of reflec-
tance standards (Fig. 6). This shows that, generally,
the linearization was successful. However, one should
note that the values of the reflectance standards with
low nominal reflection values are not accurate because
these standards were partially underexposed (i.e.
there are many pixels with values equal or close to the
dark current values) and, for this specific set of images
of standards, some standards are slightly closer to, or
further away from, the light source. This means that
the calibration line will not be perfectly straight.
Because the relatively darker areas (low pixel values)
of images are often inaccurate in the measurements

they yield, these values may be nonlinear (Barnard &
Funt, 2002). However, the measurement error is rela-
tively small.

RGB EQUALIZATION

If the goal is to derive reflection data from the
photographs, then greys should, by definition, have
equal reflection in all three colour channels. So, if
R ≠ G ≠ B in the calibration images, the next step is
to equalize the three channels with respect to the
images of the reflection standards, and then scale
the values between 0–255. This, in theory, should be
relatively simple: it is a matter of producing a ratio
between the three channels and then scaling them,
usually with respect to the green channel as a refer-
ence point, before multiplying the entire image by
2.55 to set the values on a scale between 0 and 255.
So, for our data:

R′ = (RxR)2.55 (5)

G′ = (GxG)2.55 (6)

B′ = (BxB)2.55 (7)

where xi is the scaling value for each channel, and R,
G, and B are the linearized image values for each
channel, respectively. The equalized values were then
tested for accuracy using a different set of calibration
images. Figure 8 shows the result. The three channels
closely match the required calibration line. Note that
there is no need for 255 to represent 100% reflection;
indeed, to obtain maximum resolution in colour dis-

Figure 7. The relationship between measured greyscale value and nominal reflection value for the seven reflectance
standards, showing the linearization of the gamma curves. LW, longwave; SW, shortwave; MW, mediumwave.
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crimination within and between images, if all images
to be analysed are relatively dark then it would be
advisable for the maximum pixel value within the
dataset to be 255.

An important issue is that of saturation. With
regards to the above calibration results (Figs 6, 7, 8),
we maintained an integration time of 1/30 s and a
lens aperture of f/8.0. This resulted in images that
were slightly under-exposed and guarded against
the serious problem of saturation. Saturation (also
known as ‘clipping’; Lauziére et al., 1999) occurs
when the light levels arriving at the sensors reaches
an upper limit, above which any more photons are
not registered. This can be a serious problem because
it  prevents  measurements  of  the  true  value  that
the pixels would have reached had saturation not
occurred; a problem recognized in some studies (Hong
et al., 2001). The effects of saturation are easy to find,
with saturated pixels in the original image yielding
values of approximately 255, with little or no stan-
dard deviation. For example, images taken under
similar circumstances, but with an integration time
of 1/15 s produce results that at nominal reflection
values of 75%, the red channel ceases to rise in pixel
values. This is due to the effects of saturated pixels in
the original image in the red channel, which causes
the calibration to fail, since the linearization becomes
ineffective and the equalization procedure results in
the red channel grey values dropping away at higher
reflection values (Fig. 9). These problems can be
avoided by changing the exposure/integration time

(t), or altering the intensity of the light source,
because these determine the flux of light reaching the
camera’s sensors (Hong et al., 2001). However, if the
exposure is to be changed between images it is impor-
tant to test that the response of the camera is the
same at all exposure settings, otherwise a separate
calibration will need to be performed for every change
in exposure. Therefore, where possible, it is recom-
mended that the aperture value, at least, is kept
constant (Hong et al., 2001).

It is often the case that the red channel of a digital
camera is the first to saturate (as was the case with
our camera, even when using a light source biased
towards shorter wavelengths of light; Fig. 9), possibly
because the sensors in some cameras may be biased to
appeal to human perceptions, with increasing red
channel values giving the perception of warmth. This
may be particularly deleterious for studies investigat-
ing the content of red signals (Frischknecht, 1993;
Wedekind et al., 1998), which are widespread because
of the abundance of carotenoid-based signals in many
taxa (Grether, 2000; Pryke, Lawes & Andersson, 2001;
Bourne, Breden and Allen, 2003; Blount, 2004;
McGraw & Nogare, 2004; McGraw, Hill & Parker,
2005) and theories linking carotenoid signals to
immune function (Koutsos et al., 2003; McGraw &
Ardia, 2003; Navara & Hill, 2003; Grether et al., 2004;
McGraw & Ardia, 2005). Some cameras are also biased
in their representation of relatively short wave-
lengths, to compensate for a lack of these wavelengths
in indoor lights (Lauziére et al., 1999).

Figure 8. The greyscale values measured for the set of reflectance standards following the process of RGB channel
equalization and scaling, showing a close fit to the required values. LW, longwave; SW, shortwave; MW, mediumwave.
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SELECTING/CONTROLLING LIGHT 
CONDITIONS

To some extent, the importance of selecting standard-
ized lighting conditions and distances depends upon
the calibration required. Lighting conditions should be
as stable, standardized, and consistent as possible for
each photo if measurements of reflection are desired,
especially if photographs of standards are taken only
at the beginning and end of sessions. However, when
photographing natural scenes and using measures of
photon catch, for example, lighting conditions are
likely to vary considerably. This may in fact be an

important part of the study: to include information
about the ambient light. Generally, it is often best to
avoid flashguns because the output of these is difficult
to measure and may be variable; however, a high-end
flash with good light diffusers may be fine. If using a
flash, putting a grey standard(s) of known reflectance
into the part of the scene interested in should allow
good recovery of reflectance, even if the illumination
conditions vary in an uncontrolled manner, although
these standards may need to be included in every
image rather than just at the start/end of sessions.
Therefore, using a flash may be acceptable if one is
just interested in reflectance, but should be avoided if

Figure 9. The greyscale values measured for the set of reflectance standards following the process of linearization (A)
and then RGB channel equalization (B) and scaling, showing that the linearization does not produce a linear response
when there are saturated pixels in the image, as is the case in the R channel in this example. Saturated pixels also result
in a poor equalization result, indicated by a dropping off of the R channel at higher values.
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you are interested in the behaviour of natural illumi-
nation (e.g. shadows).

MAPPING TO CAMERA-INDEPENDENT 
MEASURES

Having used the coefficients obtained in the lineariza-
tion procedure to linearize the RGB values in the
images obtained, the next step is to transform them to
camera-independent values. This is because the R, G,
and B data, whether in radiance or reflectance units,
are specific to the wavebands designated by the cam-
era sensors’ spectral sensitivity curves (Fig. 1C). This
may be sufficient for some research purposes; for
example, if the sensitivities of the camera’s sensors
broadly correspond to the bandwidths of interest.
However, it will often be desirable, either because a
specific visual system is being modelled (e.g. human,
bird), or simply to facilitate comparison of the results
across studies, to transform the camera-specific RGB
values to camera-independent measures. In human
studies, these are frequently one of the sets of three-
coordinate representations devised by the CIE for
colour specification and/or matching. Different three-
variable representations have been devised to approx-
imate colour-matching for images illuminating only
the M-L-cone-rich central fovea, or wider areas of the
retina; for presentation of images on video display
units or printed paper; or representations that incor-
porate the colour balance arising from a specific illu-
minant, or are illumination independent (Wyszecki &
Stiles, 1982; Mollon, 1999; Westland & Ripamonti,
2004). The advantage is that all these metrics are pre-
cisely defined, the formulae downloadable from the
CIE website, and the values in one coordinate system
can be transformed to another. Westland & Ripamonti
(2004) provide formulae and downloadable MATLAB
(The Mathworks Inc.) code for such transformations.

Another possible camera-independent transforma-
tion is to map the linearized RGB values to the
spectral sensitivities of the photoreceptors of either
humans (Párraga et al., 2002) or nonhuman species.
In the case of RGB radiance measures, this corre-
sponds to calculating the photon catches of an
animal’s photoreceptors, rather than the camera’s sen-
sors, when viewing a particular scene. In the case of
RGB reflectance measures, this can be thought of as a
mapping to a species-specific estimate of reflectance in
the wavebands to which the animal’s photoreceptors
are sensitive. Both types of mapping are particularly
relevant to studies involving nonhuman animals,
where accurate psychophysical estimates of colour-
matching, of the sort used to calculate human-
perceived colour from camera data, are not usually
available. For such mapping to be viable, it is not nec-
essary that the species’ cone spectral sensitivities

match those of the camera’s sensors particularly
closely (e.g. this is not true for humans; compare
Fig. 1A, C). However, for the transformation to pro-
duce reliable data, the species’ overall spectral range
has to fall within that of the camera, and the species
has to have three or less photoreceptors. For example,
one can map RGB data to the lower dimensional
colour space of a dichromatic dog (with one short- and
one medium/long-sensitive cone type; Jacobs, 1993),
but a camera with sensitivities such as that shown in
Fig. 1C can never capture the full colour world of a
trichromatic bee (with UV, short-, and medium-wave
photoreceptors; Chittka, 1992). Mapping RGB data to
a bird’s colour space would appear to be invalid on two
counts: birds have a broader spectral range than a
conventional camera (often extending into the UV-A)
and are potentially tetrachromatic (Cuthill et al.,
2000b). However, if the scenes or objects of interest
lack UV information, then a mapping from RGB to
avian short-, medium-, and long-wave cone sensitivi-
ties can be achieved. We present the method here,
which can be used for any analogous trichromatic sys-
tem (e.g. human) or, with simple modification, a lower-
dimensional system of the type that is typical for most
mammals (Jacobs, 1993). Subsequently, we consider
how UV information from a separate imaging system
can be combined with the RGB data to provide a com-
plete representation of bird-perceived colour.

The goal is to predict the quantal catches, Qi, of a set
of i photoreceptors (where i ≤3), given a triplet of cam-
era-sensor-estimated radiance values, QR, QG, and QB,
derived from the calibration and linearization process
described above. This amounts to solving a set of
simultaneous regression equations, which are likely to
be nonlinear. Mappings can be peformed for more than
three photoreceptor classes, provided that the spectral
sensitivities of all types are covered by the spectral
range of one or more of the camera’s sensors. For
example, a mapping could be produced to calculate
images corresponding to the longwave, mediumwave,
and shortwave cones of a bird’s visual system, plus a
luminance image based on avian double cone sensitiv-
ity. Once mapped images have been obtained, further
calculations also allow the production of images cor-
responding to various opponency channels. Westland
& Ripamonti (2004) summarize their, and other,
research on the family of equations most likely to pro-
vide a good fit to data, and conclude that linear models
(with interaction terms) of the following type perform
well. For ease of interpretation, we use the notation R,
G, and B to describe the camera pixel values rather
than their calibrated and linearized equivalents, QR,
QG, and QB.

Qi = bi1R + bi2G + bi3B + bi4RG + bi5RB
+ bi6GB + bi7RGB (8)
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Where bi are coefficients specific to receptor i, and the
curve is forced through the origin (when the calibrated
camera sensor value is zero, the animal’s quantal catch
is zero). In some cases, dependent on the camera and
the nature of the visual system to which mapping is
required, polynomials (i.e. including terms in R2, G2,
and B2, or higher orders) may provide a significantly
better fit (and did in our case); this should be investi-
gated empirically. Cheung et al. (2004) note that even
mapping functions of unconstrained form, obtained
using neural networks applied to large datasets, do not
significantly outperform polynomials. The data
required to estimate the coefficients for the i photore-
ceptors can either be radiances directly measured
using an imaging spectroradiometer (Párraga, 2003)
or, more conveniently, radiances approximated as the
product of reflectance spectra and the irradiance spec-
trum of the illuminant. Using eqn. 8, applied to a
trichromat, 3 × 7 coefficients need to be estimated, so
the number of radiance spectra must be considerably
greater than this (> 100 in our experience as a mini-
mum, but closer to a 1000 is better). Large numbers of
radiance spectra can be obtained from internet data-
bases (Parkkinen, Jaaskelainen and Kuittinen, 1988;
Sumner & Mollon, 2000). The coefficients for each pho-
toreceptor are then found by multiple regression (or,
conveniently, if using MATLAB, by matrix algebra;
Westland & Ripamonti, 2004). Although, in principle,
one could derive a mapping function (i.e. set of coeffi-
cients) for all possible natural spectra, viewed under all
possible illuminants, greater precision can be achieved
by determining a situation-specific mapping function
for the research question at hand. For example, if the
goal is to use a camera to quantify the coloration of
orange to red objects under blue skies, then a very pre-
cise mapping function could be estimated by using radi-
ance data calculated only from the reflectance spectra
of orange to red objects viewed under blue sky irradi-
ance. If one is to derive the mapping functions by cal-
culation (i.e. calculate quantal catch for camera and
desired cone sensitivities, using reflectance and irra-
diance data), then the sensitivity of the camera’s sen-
sors is required. However, one could also derive the
mapping empirically without ever measuring camera
sensor sensitivities, by measuring the response of the
camera’s three channels to different (known) radiance
spectra, and by determining the response of the cones
of the required animal’s visual system. To achieve accu-
rate mapping, the camera’s response would have to be
measured for many hundreds of radiance spectra and
this would be time-consuming, involving many stimuli.

UV IMAGING

In our own research, we wished to quantify lepi-
dopteran wing patterns, with respect to avian vision,

so we also needed to measure the amount of reflection
in the avian-visible UV waveband. At the same time as
RGB photography, images of the reflectance standards
and the lepidopterans were taken with a UV sensitive
video camera (see Appendix 2).

First, we tested whether the camera was linear with
respect to both changes in the integration time, and
with respect to increases in the reflection value; being
a high-specification technical camera, this was indeed
the case. This meant that the only calibrations needed
were to scale the images to between 0 and 255; which
is not initially as easy as it sounds because the cali-
brations have to account for different gain and the
integration times. Figure 10 provides an example of
the results for the UV calibration process. In most sit-
uations, it will be simpler to maintain the same gain
values because this reduces the number of factors to
consider in the calibration process.

If images are obtained from more than one camera,
there is an additional consideration that must be
addressed; that of ‘image registration’. Images derived
from one RGB camera will all be the same angle and
distance from the specimens, and so the objects pho-
tographed will be on an identical scale in each of the
three channels, based on the interpolations imple-
mented. This may not be the case if obtaining images
from a second camera; such as in our study, meaning
that the specimens were a different size in the photo-
graphs and would not necessarily be easy to align with
the RGB images. Furthermore, one camera may pro-
duce images with a lower resolution, and with less
high frequency information; different cameras will
have different Nyquist frequencies, meaning that
although aligning lower spatial frequency patterns
may be relatively easy, information may be lost or
poorly aligned at higher frequencies. One potential
approach is to use Fourier filtering to remove the high-
est spatial frequency information from those images
that contain it, down to the highest frequencies con-
tained in the images from the other camera. However,
this may be undesirable if the high spatial frequency
information is important, as it frequently will be with
complex patterns, or where edge information between
pattern components is critical. The task of aligning
images is made easier if: (1) different cameras are set
up as closely as possible, in particular with relation to
the angle of photography because this is the hardest
factor to correct and (2) rulers are included in at least
a sample of the images, so they can be rescaled to
ensure specimens occupy the same scale in different
images. Including rulers in images allows for true dis-
tance measurements to be obtained and for spatial
investigations to be undertaken. If images from one
camera are larger than those from another, then it is
the larger images that should be scaled down in size
because this avoids artefactual data, generated by
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interpolation, if images are rescaled upwards. Once
the objects in the photographs are of the same size, it
may be a relatively trivial task to take measurements
from the different images that directly correspond.
However, if the images are still difficult to align then
an automated computational approach can be used. A
variety of these are available, and users should care-
fully consult available manuals/information for the
corresponding software to be sure of how the registra-
tion is completed, and to check what changes may
occur to the image properties. However, in many cases,
changes to the image structure will probably be small,
especially at lower spatial frequencies, and have little
influence on the results. One such plug-in, for the free-
ware software Image J (Rasband, 1997–2006; Abrà-
moff et al., 2004), is ‘TurboReg’ (available via a link
from the Image J website) (Thévenaz, Ruttimann &
Unser, 1998), which comes with a variety of options to
align sets of images.

HOW BEST TO USE COLOUR STANDARDS

A crucial step in calibrating a digital camera is to
include colour standards in some or all of the photo-
graphs taken. Including a set of colour standards in
each photo allows calibrations to be derived for each
individual photo, which would be highly accurate.
However, in most cases, this is impractical and unnec-
essary. For example, when the light source used is con-
sistent, a set of reflectance standards used to fit a
calibration curve need only be included in photos at
the start and end of a session. Including these in each
photo may leave little space for the objects of interest.

By contrast, in many cases, such as when photograph-
ing natural scenes where the illuminating light may
change and when wishing to calculate values such as
photon catches, it may be important to include at least
one grey standard in the corner of each photo. Possibly
the best objects to include in a photo are Spectralon
reflectance standards (Labsphere Inc.), which reflect a
known amount of light equally at all wavelengths in
the UV and human visible spectrum. However, these
are expensive and easily damaged, and if a single
standard is sufficient, a Kodak grey card (Eastman
Kodak Company), which has an 18% reflectance, can
be included, which is relatively inexpensive.

SPATIAL MEASUREMENTS

Often, we do not wish to measure solely the ‘colour’ of
a patch, but the area or shape of a region of interest. In
principle, this sounds easy but has several complica-
tions. For example, the colour boundary of an area vis-
ible to humans may not be exactly the same as for that
of another animal. Additionally, there may be colours
that we cannot see (such as UV) that have different
boundaries to those visible by a human (although most
colour patches generally have the same boundary for
different colour bands, such as UV, SW, MW, and LW).
Another problem corresponds to the acuity of the ani-
mal in question. Regions of interest with complex
boundaries may be only discernable by animals with a
high enough spatial acuity. Furthermore, there is a
specific problem with gradual boundaries, particularly
relating to defining where the actual edge of the colour
region is.

Figure 10. The effect of scaling the ultraviloet (UV) images obtained with the PCO Variocam camera and Nikon UV
transmitting lens, showing a close fit to the required values.
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There are several ways to address these issues and
one must remember that the image processing steps
that facilitate patch size or shape measurement may
interfere with the accurate measurement of patch
colour per se (e.g. by enhancing contrast between
patches). One method of determining the boundary of
a colour patch is to produce an automated procedure to
define a specific area of interest. This can be done by
thresholding an 8-bit or colour image to a binary
(black and white) image where each individual pixel
has a value of either one (white) or zero (black)
(Fig. 11). This can be performed by writing a custom
programme where the threshold level is defined
specifically by the user, preferably based on an explicit
assumption or data. Otherwise, most imaging
software has automatic thresholding algorithms,
although it is not always known what the thresholding
value used will be.

A different method that can be used to define an
area of interest is that of edge detection. This is where
an algorithm is used to determine edges in an image,
corresponding to sharp changes in intensity (either
luminance or in terms of individual colour channels).
These edges may, for example, be found at the bound-
ary of a colour patch (Fig. 11). The useful thing about
edge detection algorithms is that they can be opti-
mized and not linked to any specific visual system, or
they correspond to the way in which real visual sys-
tems work (Marr & Hildreth, 1980; Bruce, Green &
Georgeson, 2003; Stevens & Cuthill, 2006).

Once the boundary of a colour patch has been
defined, it is simple to measure the area of the patch.
Measuring the shape of an object is more difficult,
although imaging software often comes with algo-
rithms to measure attributes such as the relative cir-
cularity of an area and, occasionally, more advanced
shape analysis algorithms.

DRAWBACKS TO USING DIGITAL IMAGES

The most notable drawback is that the information
obtained is not wavelength specific (i.e. it is known
what wavelengths contribute to each channel, but not
the contribution of any specific wavelength to the RGB
value of any one pixel). This drawback can be over-
come by so-called multispectral imaging (or, if the
number of wavebands is high, ‘hyperspectral imag-
ing’). This can involve rotating a set of filters in front
of the lens, allowing the acquisition of successive
images of different wavebands (Brelstaff et al., 1995;
Lauziére et al., 1999; Angelopoulou, 2000; Stokman
et al., 2000; Losey, 2003). This method may be partic-
ularly useful if detailed wavelength information is
required, or if the visual system of the receiver that
the signal is aimed at is poorly matched by the sensi-
tivity of an RGB camera. We do not cover this tech-

nique here because, although it combines many of the
advantages of spectrometry with photography, the
technology is not practical for most behavioural and
evolutionary biologists. Hyperspectral cameras are
often slow because they may have to take upwards of
20 images through the specified spectral range. The
equipment, and controlling software, must be con-
structed de novo and conventional photography’s
advantage of rapid, one-shot, image acquisition is lost.
The specimens must be stationary during the proce-
dure because movement can cause problems with
image registration. Also, as Losey (2003) acknowl-
edges, images obtained sequentially in the field may
be subject to short-term variations in environmental
conditions, and thus introduce considerable noise.
Averaging the values obtained from multiple frames of
the same waveband may help to eliminate some of this
effect (Losey, 2003).

PROBLEMS WITH USING THE AUTOMATIC 
CAMERA SETTINGS

Many studies of animal coloration utilizing cameras
apparently use the camera with its automatic set-
tings. There are numerous problems that can arise
when using the ‘auto’ mode. The main problem is that
the settings used by the camera are adjusted accord-
ing to the scene being photographed and so may be
inconsistent. In general, camera manufacturers are
interested solely in selling cameras and therefore
want to produce pictures that look aesthetically ‘good’
by enhancing some of the images’ colours and
contrasts and, thus, automatic modes are generally
compatible with this objective. Given that an automat-
ically set white balance changes between photos, it
gives rise to different ratios between the LW, MW, and
SW sensor responses. This need not always be an irre-
trievable flaw but would almost certainly need some
highly complex calibration procedures to recover con-
sistent data, such as calibrating every single combina-
tion of white balance, contrast enhancement and
aperture setting modes. Any low- to mid-range camera
is likely to have some white balancing present, and
most mid-range cameras will give the option to man-
ually set the white balance. If the camera does not
allow this option and there is no indication of this in
the manual, then changing the white-balance settings
may not be possible. An additional problem with auto-
matic settings is that calibration curves/settings could
also change at different aperture settings; this may
not always be the case but, when using the automatic
mode, there is there additional complication that the
aperture and exposure (integration) time may change
significantly simultaneously, leading to unnecessarily
complicated calibrations if values of reflection, for
example, are required. The aperture selected by the
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Figure 11. Different images of a clouded yellow butterfly Colias croceus, modified to show regions of interest, such as the
wing spots, identified by various techniques. A, the original 8-bit grey-level image (pixel values between 0 and 255). B,
the image after an edge detection algorithm has been applied, clearly identifying a boundary around the two forewing
spots, but not the hindwing spots. C, the original image after being thresholded to a binary (black/white) image with a
threshold of 64. This clearly shows the forewing spots but does not produce spots where the hindwing spots were in the
original image. D, the original image when converted to a binary image with a threshold of 128, now picking out both the
forewing and hingwing spots (although with some ‘noise’ around the hindwing spots). E, the original image converted to
a binary image with a threshold of 192, now not showing any clear wing spots. F, the original image when first converted
to a pseudocolour image, where each pixel value falling between a given range is given a specific colour. The image is then
reconverted to a grey-level image and now shows the hindwing spots with marginally sharper edges than in the original
image.
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camera will also affect the quality of the image, par-
ticularly depth of field. Another potentially serious
problem with using the auto mode is that the photo-
graph will not optimize the dynamic range of the scene
photographed, meaning that some parts of the scene
may be underexposed or, far more seriously, saturated.

CONCLUSIONS

One of the earliest studies to outline how digital image
analysis can be used to study colour patterns is that of
Windig (1991), with an investigation of lepidopteran
wing patterns. Windig (1991) used a video camera,
connected to a frame grabber to digitize the images for
computer analysis, a similar method to that which we
used to capture the UV sensitive images. Windig
(1991) stated that the method was expensive, and the
programmes were highly complex but, today, flexible
user friendly software is available, with various free-
ware programmes downloadable off the internet, and
the purchase of a digital camera and software is pos-
sible for a fraction of the cost of setup used by Windig
(1991).

Windig (1991) argued that any image analysis pro-
cedure should meet three criteria. First, completeness:
a trait should be quantified with respect to all charac-
ters, such as ‘colour’ and area. Our procedure meets
this criterion because reflection, plus spatial meas-
urements, are attainable. Second, the procedure needs
to be repeatable. This was also the case with our
approach because the calibrations for a set of images
of reflectance standards were still highly accurate for
other images taken under the same conditions, but at
different times. Finally, the process should be fast rel-
ative to other available methods, as was our study,
with potentially hundreds of images taken in a day,
quickly calibrated with a custom MATLAB pro-
gramme and then analysed with the range of tools
available in Image J.

Another advantage of capturing images with a dig-
ital camera is that there are potentially a host of other
noncolour analyses. Detailed and complex measure-
ments of traits can be undertaken rapidly, with mea-
surements and calculations that would normally be
painstakingly undertaken by hand performed almost
instantaneously in imaging software, including mea-
surements of distances, areas, and analysis of shapes,
plus complex investigations such as Fourier analysis
(Windig, 1991). This may be particularly useful if han-
dling the specimens to take physical measurements is
not possible.

The use of digital technology in studying animal col-
oration is a potentially highly powerful method, avoid-
ing some of the drawbacks of other techniques. In
future years, advances in technology, software, and
our understanding of how digital cameras work will

add further advantages. It is already possible to
extract data of a scene from behind a plane of glass
(Levin & Weiss, 2004), which could become useful for
studies of aquatic organisms (although most glass
filters out UV wavelengths; Lauziére et al., 1999).
Techniques are also being developed to remove the
shadows from images; shadows can make edge recog-
nition more difficult (Finlayson, Hordley & Drew,
2002), and hinder tasks such as image registration.
With the explosion in the market of digital photogra-
phy products, and the relatively low cost to purchase
such items, there is the temptation to launch into
using such techniques to study animal signals, with-
out prior investigation into the technicalities of using
such methods. This could result in misleading results.
Therefore, although digital photography has the
potential to transform studies of coloration, caution
should be implemented and suitable calibrations
developed before such investigations are undertaken.

KEY POINTS/SUMMARY

Below is a list of some of the main points to consider if
using cameras to study animal coloration.

1. Images used in an analysis of colour should be
either RAW or TIFF files and not JPEGs.

2. Grey reflectance standards should be included in
images at the start of a photography session if the
light source is constant, or in each image if the
ambient light changes.

3. It is crucial not to allow images to become satu-
rated or underexposed because this prevents accu-
rate data being obtained.

4. Many cameras have a nonlinear response to
changes in light intensity, which needs linearizing
before usable data can be obtained.

5. To produce measurements of reflectance, the
response of the R, G, and B colour channels needs
to be equalized with respect to grey reflectance
standards.

6. Measurements of cone photon catches correspond-
ing to a specific visual system can be estimated by
mapping techniques based upon sets of radiance
spectra and camera/animal spectral sensitivity.

7. Digital images can be incorporated into powerful
models of animal vision.

8. Do not convert image data to formats such as HSB,
which are human-specific and inaccurate. Instead,
use reflection data, calculations of photoreceptor
photon catches or, if working on human-perceived
colour, well-tested colour spaces such as CIE.

9. If using more than one camera, image registration
may be a problem, especially if the different cam-
eras have different resolutions. This problem can
be minimized by setting up different cameras as
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close to one another as possible and ensuring that
one camera does not capture significantly higher
levels of spatial detail than the other.

10. Digital imaging is also a potentially highly accu-
rate and powerful technology to study spatial
patterns.
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APPENDIX 1

GLOSSARY OF TECHNICAL TERMS

Aliasing
When different continuous signals become indistin-
guishable as a result of digital sampling. Spatial alias-

ing is manifested as the jagged appearance of lines
and shapes in an image.

Aperture
Aperture refers to the diaphragm opening inside a
photographic lens. The size of the opening regulates
the amount of light passing through onto the colour
filter array. Aperture size is usually referred to in f-
numbers. Aperture also affects the ‘depth of field’ of
an image.

Bit depth
This relates to image quality. A bit is the smallest unit
of data, such as 1 or 0. A 2-bit image can have 22 = 4
grey levels (black, low grey, high grey and white). An
8-bit image can have 28 = 256 grey levels, ranging from
0 to 255. Colour images are often referred to as 24-bit
images because they can store up to 8 bits in each of
the three colour channels and therefore allow for
256 × 256 × 256 = 16.7 million colours.

Charge-coupled device (CCD)
A small photoelectronic imaging device containing
numerous individual light-sensitive picture elements
(pixels). Each pixel is capable of storing electronic
charges created by the absorption of light and produc-
ing varying amounts of charge in response to the
amount of light they receive. This charge converts
light into electrons, which pass through an analogue-
to-digital converter, which produces a file of encoded
digital information.

Chromatic aberration
This is caused by light rays of different wavelengths
coming to focus at different distances from the lens
causing blurred images. Blue will focus at the shortest
distance and red at the greatest distance.

Colour filter array
Each pixel on a digital camera sensor contains a light
sensitive photodiode which measures the brightness of
light. These are covered with a pattern of colour filters,
a colour filter array, to filter out different wavebands of
light.

Demosaicing algorithms
Most digital cameras sample an image with red,
green, and blue sensors arranged in an array, with one
type at each location. However, an image is required
with an R, G, and B-value at each pixel location. This
is produced by interpolating the missing sensor values
via so called ‘demosaicing’ algorithms, which come in
many types.

Exposure
The exposure is the amount of light received by the
camera’s sensors and is determined by the aperture
and the integration time.
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Foveon sensors
Foveon sensors capture colour by using three layers of
photosensors at each location. This means that no
interpolation is required to obtain values of R, G, and
B at each pixel.

Image resolution
The resolution of a digital image is the number of
pixels it contains. A 5-megapixel image is typically
2560 pixels wide and 1920 pixels high and has a
resolution of 4915 200 pixels.

JPEG
JPEG (Joint Photographic Experts Group) is very
common due to its small size and widespread com-
patibility. JPEG is a lossy compression method,
designed to save storage space. The JPEG algorithm
divides the image into squares, which can be seen on
badly compressed JPEGs. Then, a discrete cosine
transformation is used to turn the square data into a
set of curves, and throws away the less significant
part of the data. The image information is rear-
ranged into colour and detail information, compress-
ing colour more than detail because changes in detail
are easier to detect. It also sorts detail information
into fine and coarse detail, discarding fine detail
first.

Lossy compression
A data compression technique in which some data is
lost. Lossy compression attempts to eliminate redun-
dant or unnecessary information and dramatically
reduces the size of a file by up to 90%. Lossy compres-
sion can generate artefacts such as false colours and
blockiness. JPEG is an image format that is based on
lossy compression.

Lossless compression
Lossless compression is similar to ‘zipping’ a file,
whereby if a file is compressed and later extracted, the
content will be identical. No information is lost in the
process. TIFF images can be compressed in a lossless
way.

Macro lens
A lens that provides continuous focusing from infinity
to extreme close-ups.

Modulation transfer function
The modulation transfer function describes how much
a piece of optical equipment, such as a lens, blurs the
image of an object. Widely spaced features, such as
broad black and white stripes, do not lose much con-
trast, because a little blurring only affects their edges,
but fine stripes may appear to be a uniform grey after
being blurred by the optical apparatus. The modula-

tion transfer function is a measure of how much
bright-to-dark contrast is lost, as a function of the
width of the stripes, as the light goes through the
optics.

Nyquist frequency
The Nyquist frequency is the highest spatial fre-
quency where the CCD can still correctly record image
detail without aliasing.

RAW
A RAW file contains the original image information as
it comes off the sensor before internal camera process-
ing. This data is typically 12 bits per pixel. The cam-
era’s internal image processing software or computer
software can interpolate the raw data to produce
images with three colour channels (such as a TIFF
image). RAW data is not modified by algorithms such
as sharpening. RAW formats differ between camera
manufacturers, and so specific software provided by
the manufacturer, or self written software, has to be
used to read them.

Saturation
In the context of calibrating a digital camera, we use
this term to denote when a sensor reaches an upper
limit of light captured and can no longer respond to
additional light. This is also called ‘clipping’ as the
image value cannot go above 255 (in an 8-bit image)
regardless of how much additional light reaches the
sensor. Saturation can also be used to refer to the
apparent amount of hue in a colour, with saturated
colours looking more vivid.

Sensor resolution
The number of effective non-interpolated pixels on a
sensor. This is generally much lower than the image
resolution because this is before interpolation has
occurred.

TIFF
TIFF (Tagged Image File Format) is a very flexible file
format. TIFFs can be uncompressed, lossless com-
pressed, or can be lossy compressed. While JPEG
images only support 8 bits per channel RGB images,
TIFF also supports 16 bits per channel and multilayer
CMYK images in PC and Macintosh format.

White balance
Most digital cameras have an automatic white bal-
ance setting whereby the camera automatically sam-
ples the brightest part of the image to represent
white. However, this automatic method is often inac-
curate and is undesirable in many situations. Most
digital cameras also allow white balance to be chosen
manually.
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APPENDIX 2

TECHNICAL DETAILS

In the present study, we used a Nikon Coolpix 5700
camera, with an effective pixel count of just under
5.0 megapixels. This does not have all of the desired
features described in our paper (the intensity response
is nonlinear and the zoom cannot be precisely fixed)
and we offer no specific recommendation, but it is a
good mid-priced product with high quality optics and
full control over metering and exposure. UV photogra-
phy was with a PCO Variocam, fitted with a Nikon UV-
Nikkor 105 mm lens, a Nikon FF52 UV pass filter and
an Oriel 59875 ‘heat’ filter (the CCD is sensitive to
near-infra-red). The camera was connected to a
Toshiba Satellite 100 cs laptop and also to an Ikegami
PM-931 REV.A monitor, which displayed the images
that were to be saved via a PCO CRS MS-DOS based
programme. With the camera remote control, the gain
and the integration time of the images could be
adjusted, with the gain either set to 12 db or 24 db and

the integration time between one and 128 video
frames (1 frame = 40 ms).

Images were transferred to a PC and all measure-
ments were taken with the (free) imaging programme
‘Image J’ (Rasband, 1997–2006; Abràmoff et al., 2004).
Measurements of standards were taken by drawing a
box over the area of interest, and then using the his-
togram function to determine the mean grey scale
value and standard deviation for each channel. All
other image and data manipulations, including the
linearization and transformation between coordinate
systems, were performed with MATLAB (The Math-
works Inc.), although other languages, such as Java
(Sun Microsystems, Inc.; Efford, 2000) are also useful.
MATLAB has rapidly become an industry standard in
vision science, on account of its efficiency at matrix
mathematics and manipulation (photographic data
are large matrices). MATLAB and Image J benefit
from the large number of plug-ins and toolboxes writ-
ten by users for other users.




