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Chapter 1

In tro duction

When asked about the importance of color, Picassoin oneof his blue yearsexclaimed:
\Colors are only symbols. Reality is to be found in luminance alone." His message
seemsto be taken to heart by the computer vision communit y. In general the �rst
thing to do, when trying to interpret the content of images,when looking for objects,
persons, textures, or at a smaller scale for edges,ridges, and corners, is to discard
color. In fact, color is seenassuperuous in a world which canbevery well understood
by consideringluminance alone. This is reected in the fact that the majorit y of the
current existing computer vision applications is solely basedon luminance.

When asking a personwho becamecolorblind later in life, about the importance
of color. He will answer that he sometimeswrongly identi�es objects where there are
only shadows present. When driving the car he suddenly brakesto stop for a shadow
blocking the road [61]. Next to that, hesometimesencounters problemsdistinguishing
between objects, e.g. mistaking ketchup for jam, and mustard for mayonnaise[61].
These confusionscausedby color blindness surely point out the importance of color
in interpreting the visible world.

Two major advantages of using color vision are revealed from the previous ex-
ample. First, color provides extra information which allows the distinction between
various physical causesfor color variations in the world, such aschangesdue to shad-
ows, light sourcereections, and object reectance variations. This helps to quickly
identify the black object on the road as a shadow. Next to this, color is an impor-
tant discriminativ e property of objects, allowing us to distinguish between mustard
and mayonnaise. This thesis explores these aspects of color, proposing theory and
techniques to improve the usefulnessof color for computer vision.

1.1 Color in Computer Vision

1.1.1 From Luminance to Color

From a mathematical viewpoint the extension from luminance to color signals is
an extension from scalar-signalsto vector-signals. This change is accompaniedby
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(a) (b) (c) (d) (e)

Figure 1.1: (a) Example imageand (b) linear smoothed version of exampleimage. (c)
Red channel, (d) green channel and (e) blue channel of exampleimage (see also color
plate C.1).

several mathematical obstacles. Straightforward application of existing luminance-
basedoperators on the separatecolor channels, and subsequent combination of the
results, fails due to undesiredartifacts [1].

For example,smoothing a color imagewith a Gaussian�lter blurs the edges,which
is also common for luminance based smoothing. In color images linear smoothing
intro duces new chromaticities. An example is given in Fig. 1.1 where, after linear
smoothing, the color purple appears between the blue and red region. These new
chromaticities are visually unacceptableand new techniquesare required for the task
of color image enhancement.

To prevent the intro duction of new chromaticities, non-linear operations are re-
quired. In contrast to luminance valuesthere is no natural ordering for vector values,
meaning that there is no generally acceptedmethod to say that one vector is larger
than another. Therefore, new algorithms are required for the computation of known
non-linear operators such as the median, local and global mode [1], [59], [73], [84].
A framework in which these non-linear operators are elegantly brought together is
the Imprecision Spaceof Gri�n [22], alsoknown as locally orderlessimagesby Koen-
derink [41], [84]. Apart from the spatial scale,de�ning the sizeof the spatial extent
of a measurement, the tonal scaleis intro duced describing its extent along the inten-
sity axis. As a consequence,points are no longer described by a single value, but by
a local histogram instead. Extension of this framework to color, although straight-
forward, is practically unusable due to the computational complexity causedby the
high-dimensionality of such color histograms. Since the operations basedon the lo-
cal histograms remain desiredfor color images,e�cien t algorithms are neededwhich
prevent the actual computation of the local color histograms.

A secondmathematical hurdle in the extension from luminance to color-based
operations is how to combine the di�eren tial structure of color images. Combining
the derivativeswith a simple addition of the separatechannelsresults in cancellation
in the case of opposing vectors [11]. This is illustrated in Fig. 1.1c,d,e. For the
blue-red and cyan-yellow edge in Fig. 1.1 the vectors in the red and blue channel
point in opposite directions and a summation will result in a zero edge response,
while an edge is obviously present. Also for more complex local features, such as
cornersand T-junctions, the combination of the channelsposesproblems. Applying a



1.1. Color in Computer Vision 3

(a) (b) (c)

Figure 1.2: (a) Example image, (b) human scenesegmentation and (c) standard com-
puter edgedetection (see also color plate C.2).

corner detector to the separatechannelsresults in a singledetectedcorner in the blue
channel. However, there is no evidencefor the cross-points with the circle in any of
the separatechannels. Hence,a combination of corner information from the separate
channelsmight fail. New methods are required to combine the di�eren tial structure
of color imagesin a principled way.

1.1.2 Photometric Information

There are several causesof color value composition in images, including shadows,
shading, specularity and material edges.In Fig. 1.2, an exampleof a real-world scene
is given, together with a human segmentation (groundtruth) [50]. Furthermore, in
Fig. 1.2c the result of a standard edgedetection algorithm is given. The algorithm
returns more edgesthan the human segmentation. The problem is how to measurethe
importance of edges.An important indicator may be derived from the physical cause
of an edge. Is the edgecausedby a shadow, shading,highlight, or a object reectance
changein the scene?The human segmentation discardsall sceneincidental edges,such
as the shading of the peppers and the specularities. Hence, for sceneinterpretation
it is important to distinguish betweenthe various causesof features in images.

The dichromatic reection model, intro duced to computer vision by Shafer [66],
provides a physical model which identi�es how photometric changesinuence RGB-
values. Basedon this model, others provided methods for segmentation, classi�cation,
and recognition which are independent of sceneincidental events. Thesemethods fo-
cussedon zeroth order photometric invariance [18], [20], [38], [52], [71]. The e�ect of
the dichromatic model on higher order, di�eren tial-based algorithms remained unex-
plored for long.

Di�eren tial photometric invariance is investigated by Geusebroek et al. [16]. The
drawbacks of photometric invariance theory, loss of discriminativ e power and dete-
rioration of noise characteristics [69], are inherited by the di�eren tial photometric
operations. To improve performance,the impact of the instabilit y of photometric in-
variants can be diminished through a noisepropagation analysisof the invariants [19].
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(a) (b)

Figure 1.3: (a) Example image, and (b) results of a standard salient point detector
(see also color plate C.3).

However, a drawback is that proper noiseestimation is required which is not always
available. Hence, methods are required to compute robust photometric invariants
without a-priori knowledgeof the noisecharacteristics.

1.1.3 Color Distinctiv eness

Describing objects in the world asa set of salient points is currently usedwith success
in object recognition, matching and retrieval [47], [63], [65], [85]. The distinctiv eness
of the selected salient points is of critical importance for the applicabilit y of the
method. It de�nes the concisenessof the representation and the discriminativ e power
of the local features.

For example, in Fig. 1.3, a picture of two brightly colored parrots on a dull back-
ground is depicted. In Fig. 1.3b the most prominent cornerscomputed by the Harris
salient point detector are depicted [27]. Only four out of the twenty points correspond
to the salient parrots. And, none of the points focus on the bright red-yellow transi-
tion which immediately attracts the eye. The weaknessof the salient point detector
is mainly in its disregard of color information.

Although the majorit y of image data is in color format nowadays only little work
has beendone in incorporating color into salient point detection and evaluation [29],
[33]. One of the reasonsluminance-basedmethods remain much used is becausethe
lack of signi�cant improvement with respect to luminancebasedmethods. This canbe
explained by the important observation that the majorit y of di�eren tial variation in
color imagesis along the luminance axis. A drawback of the successof the luminance
representation, is that when looking for rare events, the axis of major variation is of
much less importance. For the computation of the distinctiv e points in the image,
the focus should be on rare events. For theseevents the axesof relatively little varia-
tion becomeindispensable,and hencefor salient point detection color information is
crucial.
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1.2 Ob jectiv es and Approac h

In this thesis, we aim to improve the three aspects of color vision discussedabove.
From the above discussionwe arrive at the following three objectives:

1. From Luminance to Color: Extend luminance-basedalgorithms to color in
a mathematically soundway. One consequenceis that color imageenhancement
methods do not intro duce new chromaticities. A secondimplication is that for
di�eren tial-based algorithms the derivativesof the separatechannelsshould be
combined without lossof derivative information.

In chapter 2, an image enhancement method for color images is proposedwhich is
basedon the minimization of a robust error norm [9], [32]. Interpreting color image
enhancement as a robust estimation problem reducesthe intro duction of unwanted
new chromaticities. In the caseof a zeroth order local model, the method is proven to
be equal to �nding the local mode in a histogram. However, it hasthe advantage that
the histogram is never computed. Higher order local models allow for more complex
local structures, and therefore yield better image enhancement results.

The problem of opposing vectors, which occurs for all color image edges,only
occurs for a particular class of luminance images. Namely, for oriented patterns,
which arepatterns with onedominant orientation, such as�ngerprin t data and seismic
images [37]. These patterns are characterized by their high frequency nature. The
local di�eren tial structure consistsof quickly succeedingvalleys and ridges,with local
gradients pointing in opposing directions. Existing operations fail on these images
since they are designedfor neighborhoods which can be locally modelled as a step-
edge. To cope with the opposing vector problem new operations are needed. The
solution is found in tensor mathematics, in which opposing vectors reinforce each
other [6], [8], [24]. For local curvature estimation the existing method [86] also fails
for oriented patterns. In chapter 4, tensor mathematics is used to derive a local
curvature estimator for oriented patterns.

Due to the symmetry between the opposing vector problem for color imagesand
oriented patterns, the operations which were proposed for oriented pattern images
are straightforwardly extendableto color images. In chapter 5, an overview of tensor-
basedfeatures[6], [27], [44] is given and extensionsof the featuresto color imagesare
proposed.

Wefocuson low-level operationswhen incorporating color into existing luminance-
basedalgorithms. To handle the mathematical obstaclestwo methods are proposed.
Firstly , for color image enhancement a method is proposedwhich prevents the intro-
duction of new chromaticities. Secondly, a mathematical model is proposed which
combines the di�eren tial structure of the color channels.

2. Photometric Information: Compute photometric invariant di�eren tial infor-
mation in a robust way. Here we focus on the classof applications for which
no a-priori knowledge of the noise characteristics of the acquisition system is
available.
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In chapter 3, a new set of derivativesis proposedwhich we refer to asquasi-invariants.
These quasi-invariants share with full photometric invariants [16], [18] the property
that they are insensitive to certain photometric edges,but do not have the inherent
instabilities of full photometric invariants.

In chapter 5, a framework for color image features is proposed which couples
color tensor-basedfeatures with photometric quasi-invariants and full photometric
invariants. The applicabilit y of the quasi-invariants is restricted to feature detection,
which is the localization of features in the image. For photometric invariant feature
extraction, wherelocal descriptorsare extracted from the image, full invarianceis still
required. To improve the robustnessof the full invariants, uncertainty measuresof full
invariants are derived [19]. The tensor framework elegantly allows incorporation of
uncertainty measures.A variety of local imagefeaturesis derived from this robusti�ed
invariant color tensor.

3. Color Distinctiv eness: Improve the distinctiv enessof salient point detection
algorithms by explicitly incorporating color statistics into the detector design.

In chapter 6, color distinctiv enessis explicitly incorporated into the designof di�eren tial-
basedsaliencydetection [6], [27], [29]. An algorithm is proposed,which is called color
saliencyboosting. It starts from an analysisof the statistics of color imagederivatives.
Basedon this study, the salient point detector is adapted in such a way that deriva-
tiv eswith equal saliencyhave equal impact on the saliency function. The adaptation
is general. It is easily extendable to existing feature detectors.



Chapter 2

Least Squares and Robust
Estimation of Lo cal Image
Structure �

2.1 In tro duction

Linear scale-spacetheory of vision not only refers to the intro duction of an explicit
scale-parameter,it also refers to the use of di�eren tial operators to study the local
structure of images. The classicalway to observe the local di�eren tial imagestructure
is to considerall Gaussianderivativesat scales up to order N. Basically what we do is
construct the Taylor seriesexpansionof the smoothed image (i.e. the image observed
at scales). The Taylor polynomial thus is an approximation of the smoothed image
and not of the original image.

Instead of constructing a polynomial local model of the smoothed image we can
equally well construct a polynomial approximation of the unsmoothed image. Our
starting point is the image facet model as intro duced by Haralick et al. [25]. His
facet model takes a polynomial function and �ts it to the data observed in a small
neighborhood in the image using a linear least squaresestimation procedure. The
image derivatives then can be calculated as the derivatives of the �tted analytical
function.

Farneb•ack [12] generalizesthe Haralick facet model to incorporate spatial weights
in order to expressthe relative importance of the image samplesin estimating the
parametersof the polynomial function. In the classicHaralick facet model all points
in the local neighborhood are consideredequally important.

For spatial weighting the choiceof the Gaussiankernel leadsto a specially e�cien t
implementation. Due to the fact that the derivatives of the Gaussian function are
given by a polynomial (determined by the order of di�eren tiation) times the Gaussian

� Accepted for publication by the International Journal of Computer Vision [77]

7



8 Chapter 2. Least Squares and Robust Estimation of Lo cal Image Structure

function itself, the coe�cien ts in the polynomial function turn out to be a linear
combination of the Gaussianderivatives.

The least squaresestimation procedure considersall points in a local neighbor-
hood, even in the situation where the local neighborhood is on the boundary of two
regionsin an image. The regionson either sideof the boundary may well be approxi-
mated with a low-order polynomial model. The regionscan be so di�eren t that their
union cannot be accurately described using the same low order polynomial model.
The estimation procedure then compromisesbetween the two regions: the edgewill
be smoothed.

In 2.2 we generalize the Gaussian facet model to deal with those multi-mo del
situations. Instead of using a linear least squaresestimation procedure we will use
a robust estimation technique. A robust estimation technique will only consider the
data points from one of the regionsand will disregard the data from the other region
as being statistical outliers. Robust estimation of local image structure is pioneered
by Besl [5]. Our work (seealso [78]) di�ers from the work of Besl in that we consider
Gaussianaperture instead of `crisp' neighborhoods in which the polynomial function
is �tted. Furthermore we intro ducea �xed point iteration procedureto �nd the robust
estimate.

In 2.3wepresent a generalizationof earlier work [78], [81], [82]. Wederive iterativ e
robust estimators of local image structure and we will give someexamplesranging
from a simple zero order Gaussianfacet model to a �rst order facet model for color
images.

In 2.4 we describe a robust estimator for a derived image quantit y: the local ori-
entation (seealso [82]). To that end we considerthe often usedorientation estimator
basedon a eigen analysis of the structure tensor. Robust estimation of the orienta-
tion turns out to be quite similar, the structure tensor is replacedwith a `robusti�ed'
version in which only the points are consideredthat closely �t the model (i.e. the
points that are not outliers).

2.2 Least Squares Estimation of Lo cal Image Struc-
ture

Locally around a point x the image function f can be approximated with a linear
combination of basis functions � i , i = 1; : : : ; K :

f̂ = a1� 1 + � � � + aK � K : (2.1)

We can rewrite this as f̂ = � a where � = (� 1 � 2 � � � � K ) and a = (a1 a2 � � � aK )T . The
least squaresestimator minimizes the di�erence � of the image f and the approxima-
tion f̂ :

� (x) =
Z

Rd

�
f (x + y) � f̂ (y )

� 2
W (y)dy (2.2)

whereW is the aperture function de�ning the locality of the model �tting. Note that
the optimal �tting function f̂ di�ers from position to position in the imageplane. We
thus have that f̂ (y ) = �( y )a(x), i.e. f̂ (y ) = a1(x)� 1(y ) + � � � + aK (x)� K (y ).
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The optimal parameter vector a is found by projecting the function f onto the
subspacespannedby the basisfunctions in �. In this function spacethe inner product
is given by:

f T g � hf ; gi W =
Z

Rd
f (x) g(x) W (x) dx: (2.3)

The inner product of functions f and g will also be denoted as f T g.
To derive the optimal parameter vector a we take the derivative of the error �

with respect to the parameter vector a, set it equal to zero and solve for a. Writing
� in terms of the inner product results in

� (x) = (f � x � � a)T (f � x � � a) (2.4)

where f � x (y ) = f (x + y) is the translated image f � x (y ) = f (x + y). The integral is
now `hidden' in the inner product of two functions. This can be rewritten as:

� (x) = f T
� x f � x � 2aT � T f � x + aT � T � a: (2.5)

Taking the derivative of � with respect to a and setting this equal to 0 and solving
for a we obtain:

a = (� T �) � 1� T f � x = ~� T f � x (2.6)

where ~� = �(� T �) � 1 is the dual basis. The functions in the dual basis, ~� =�
~� 1 � � � ~� K

�
, are the functions such that the inner product ~� T

i f � x equals the co-

e�cien t ai in the approximation f̂ = a1� 1 + � � � + aK � K . The dual basis functions,
multiplied with the aperture function, thus are the correlation kernelsneededto cal-
culate the coe�cien ts in the polynomial image approximation.

The classic Haralick facet model usesa uniform weight function W (x) = 1 for
kxk1 � s and W (x) = 0 elsewhere,i.e. a `crisp' neighborhood within an axis aligned
squareof size2s � 2s.

For the secondorder polynomial basis:

� =
�

1; x; y; 1
2 x2; xy; 1

2 y2
�

(2.7)

the dual basis is

~� =
�

7
8 s2 � 15 x 2

16 s4 � 15 y2

16 s4 ; 3 x
4 s4 ; 3 y

4 s4 ; � 15
8 s4 + 45 x 2

8 s6 ; 9 x y
4 s6 ; � 15

8 s4 + 45 y2

8 s6

�
: (2.8)

The dual basis functions are depicted in Fig. 2.1. The �rst dual basis function (mul-
tiplied with the aperture function) is the correlation kernel neededto calculate the
coe�cien t of the constant basis function in the approximation of the local image
patch. Observe that in the Haralick facet model, the �rst dual basis function is not
everywherepositive. Fig. 2.1 alsoshows the discretedual basisfunctions, thesefollow
from a formulation of the facet model in a discrete image spaceas can be found in
the work of Haralick.

Within a scale-spacecontext the most natural choice is to start with a polynomial
basis and a Gaussianaperture function W = Gs where Gs is the Gaussianfunction
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Figure 2.1: The Haralic k Facet Mo del. From left to right, top to bottom the dual
basis functions are plotted. The shaded functions are the dual basis functions within a
2nd order facet model, the (red) stars correspond with the discrete dual functions. The
neighborhood was taken to be of size 5 � 5. The scale s for the analytical kernel was
set at s = 2:42. This value is the value to makethe di�er ence between the discrete and
analytical facet models minimal. For larger neighborhoods N � N the correspondence
becomesbetter and the analytical scale approachesN=2.

at scales. Again starting with the secondorder polynomial basis the dual basis is a
di�eren t onedue to the di�erence in the inner product (as a consequenceof a di�eren t
aperture function):

~� =
�

2 � x 2

2 s2 � y2

2 s2 ; x
s2 ; y

s2 ; � s� 2 + x 2

s4 ; x y
s4 ; � s� 2 + y2

s4

�
: (2.9)

Again, a dual basisfunction, multiplied with the|Gaussian|ap erture function is the
correlation kernel neededto calculate the corresponding coe�cien t in the polynomial
approximation of the local image patch. For the zero order coe�cien t the correlation
kernel is a Gaussian function multiplied with a parabola: (2 � x 2

2 s2 � y2

2 s2 ) Gs(x; y).
Again we seethat the zero order coe�cien t in the polynomial image approximation
requires a kernel with negative values.

The derivatives of the Gaussian function are equal to a polynomial function (a
Hermite polynomial depending on the derivative taken) times the Gaussianfunction,
we may write the correlation kernels associated with the dual basis functions in the
Gaussianfacet model as a linear combination of Gaussianderivatives. It is not hard
to prove that the zero order coe�cien t in the secondorder Gaussianfacet model is
found by convolving the image f with the kernel:

Gs � 1
2 s2 �

Gs
xx + Gs

yy

�
: (2.10)

Now we easily recognizewhere the negative valuesin the kernel comefrom. The term
Gs is the Gaussian scale-spacesmoothing term. The term � 1

2 s2
�
Gs

xx + Gs
yy

�
is a
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Figure 2.2: Zero-order coe�cien t in the Gaussian Facet Mo del. On the �rst
row, from left to right: the original image, and the zero order coe�cients in the
Gaussian facet model of order 0, 2 and 6. On the second row the convolution kernel
is shownthat, convoluted with the original image, results in the image above it.

well-known sharpening term: subtracting the Laplacian from the smoothed image,
sharpens the image. The sharpening term is due to the fact that the Gaussianfacet
model approximates the original image, not the smoothed image.

It turns out that this observation is true for higher order facet modelsaswell. For
a 4th order Gaussianfacet model, the kernel to calculate the zero order coe�cien t is:

Gs � 1
2 s2 �

Gs
xx + Gs

yy

�
+ 1

8 s4 �
Gs

xxxx + 2Gs
xxy y + Gs

yyyy

�
: (2.11)

In Fig. 2.2 the kernels to calculate the zero order coe�cien t in the Gaussian facet
model of orders 0, 2 and 6 are depicted together with the convoluted images. Appar-
ently the N -jet of an image observed at scales encodesdetails of sizelessthen s, i.e.
from the N -jet observed at scales a lot of detail can be reconstructed.

2.3 Robust Estimation of Lo cal Image Structure

Consider again the error of the Gaussianweighted least squaresapproximation:

� (x) =
Z

Rd

�
f (x + y) � f̂ (y )

� 2
Gs(y )dy : (2.12)

It is well known that this error de�nition is not well suited for those situations were
we have outliers in our measurements. In the image processingcontext statistical
outliers are not so frequently occurring. The e�ect that makesleast squaresestimates
questionableis that when collecting measurements from a neighborhood in an image
theseare often not well modelled using a simple (facet) model. For instance we may
model local image luminance quite well with a secondorder polynomial model but
not near edgeswherewe switch from onemodel instantiation to another. Such multi-
model situations are abundant in computer vision applications and are most often
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Figure 2.3: Quadratic versus (robust) Gaussian error norm. The Gaussianerror
norm is of `scale' m = 0:7.

due to the nature of the imaging processwherewe seeabrupt changesgoing from one
object to another object.

Multi-mo dalit y can be incorporated into sophisticated estimation procedures
where we not only estimate (multi-)mo del parameters but also the geometry that
separatesthe di�eren t regions (one for each model). One of the oldest examplesis
perhaps Hueckels edgedetector [30] in which a local image patch is described with
two regionsseparatedby a straight boundary. The detector estimatesthis boundary
and the parametersof the luminance distributions on each side of the edge.

In this paper wetakea lessprincipled approach. Instead of a multi-mo del approach
we stick to a simpler one-model approach where we usea statistical robust estimator
that allows us to considerpart of the measurements from the local neighborhood to
belong to the model we are interested in and disregard all other measurements as
being `outliers' and therefore not relevant in estimating the model parameters.

The crux of a robust estimation procedure is to rewrite the above error measure
as:

� (x) =
Z

Rd
� (f (x + y) � f̂ (y )) Gs(y )dy (2.13)

where � is the error norm. The choice � (e) = e2 leadsto the least squaresestimator.
Evidently measurements that are outliers to the `true' model are weighted heavily in
the total error measure. Reducing the inuence of the large errors leads to robust
error norms.

Writing f � x (y ) = f (x + y) and using the local linear model f̂ (y ) = �( y )a(x) we
obtain:

� (x) =
Z

Rd
� (f � x � � a(x)) Gs dy : (2.14)

We omitted the spatial argument y for easeof notation. In this paper the `Gaussian
error norm' is chosen:

� (e) = 1 � exp
�

�
e2

2m2

�
: (2.15)

The scalem in the error norm will be called the model scale to contrast it with the
spatial scales that is used in the spatial aperture function Gs. In Fig. 2.3 the error
norm is sketched. Compared to the quadratic error norm this norm is `clamped' at
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value 1. For e � m the exact value of the error is not important any more. Gross
outliers are therefore not given the weight to inuence the estimation greatly.

The optimal model parametersare found by calculating the derivative of the error
measureand setting this equal to zero:

@�
@a

=
@

@a

Z

Rd
� (f � x � � a(x)) Gs dy (2.16)

=
@

@a

Z

Rd

�
1 � exp

�
�

(f � x � � a(x))2

2m2

��
GS dy (2.17)

= �
1
m

Z

Rd
(f � x � � a(x)) � exp

�
�

(f � x � � a(x))2

2m2

�
Gs dy : (2.18)

Setting this derivative equal to zero and rewriting terms we obtain:

Z

Rd
f � x � exp

�
�

(f � x � � a(x))2

2m2

�
Gs dy =

Z

Rd
� a(x) � exp

�
�

(f � x � � a(x))2

2m2

�
Gs dy : (2.19)

This can be rewritten as:
Z

Rd
f � x � Gm (f � x � � a(x)) Gs dy =

Z

Rd
� a(x) � Gm (f � x � � a(x)) Gs dy (2.20)

where Gm is the Gaussian function at scalem. This Gaussian function weighs the
model distance, whereasthe Gaussianfunction Gs weighsthe spatial distance.

We de�ne the operator �:

(� m g)(y ) = Gm (f � x (y ) � �( y )a(x))) g(y ) (2.21)

i.e. the point wise multiplication of the function g with the model weight function.
Now � m actsasa diagonal (matrix) operator in the function space.Using the vectorial
notation of the inner product we can write:

� T � m f � x = � T � m � a: (2.22)

This looks like a familiar weighted linear least squaresequation that can be solved
for the value of a. It is not, because� m is dependent on a. Solving for a can be done
using an iterated weighted least squares procedure:

ai +1 =
�
� T �( ai )�

� � 1
� T �( ai )f � x : (2.23)

Someexamplesof theserobust estimators may clarify matters. In the next subsection
we consider the most simple of all local structure models: a locally constant model.
The resulting imageoperator turns out to be an iterated versionof the bilateral �lter
intro duced by Tomasi and Manduchi [72].
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Figure 2.4: Robust Estimation of Lo cal Image Structure. On the �rst row a
test image with noise added on the left and the result of the robustestimator based on
a zero-order facet model. On the second row the histograms of the imagesabove are
depicted. Observethat the robustestimator is capableof �nding the modesof both the
distributions.

2.3.1 Zero-order Image Structure

Consider a locally constant image model with only one basis function:

� = (1) (2.24)

i.e. the constant function. Eq.(2.23) then reducesto:

ai +1
0 (x) =

R
Rd f (x + y) Gm (f (x + y) � ai

0(x)) Gs(y ) dy
R

Rd Gm (f (x + y) � ai
0(x)) Gs(y ) dy

: (2.25)

This is an iterated version of the bilateral �lter as intro duced by Tomasi and Man-
duchi [72]. It is alsorelated to the �lters intro ducedby Smith et al. [70]. The bilateral
�lter thus implements one iteration of a robust estimator with initial value a0

0 = f .
In previous papers [78], [81] we have analyzedrobust estimation of the zero order

local image structure. Someobservations made are:

� The robust estimator �nds the local mode in the local luminance histogram
which is smoothed with a Gaussiankernel of scalem. The local mode that is
found is the local maximum in the smoothed histogram that is closest to the
initial value.

� Bilateral �ltering implements one iteration of the robust estimator. From mean
shift analysiswe know that the �rst step in a meanshift algorithm is a large one
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Figure 2.5: Robust Estimation and Non-linear di�usion. On the left the original
imageof a ower. In the middle the robustestimation of the zero order local structure
and on the right the result of iteratively applying one iteration of the robustestimator,
each time using the imagedata from the previousiteration (this procedure is very much
like a non-linear di�usion process).

in the direction of the optimal value. This explains the impressive results on the
bilateral �lter in reducing the noisewhile preserving the structure of images.

� The choiceof an initial estimate is very important. We have found good results
using the result of a linear least squaresestimate as the initial estimate. In
certain situations however the amount of smoothing inducedby the leastsquares
estimator setsthe robust estimator at a wrong starting point leading to a local
maximum in the histogram that does not correspond with the structure that
we are interested in. This situation is often occurring in casethe area of the
structure of interest is less then the area of the `background' (e.g. document
images where there is more paper then ink visible). In such casesthe image
itself can be usedas an initial estimate of the zero order local structure.

� The results of robust estimation of local imagestructure bear great resemblance
to the results of non-linear di�usion. The theoretical link betweenrobust esti-
mation and non-linear di�usion techniques has been reported before (see[9]).
The main di�erence with the robust estimator technique described here is that
in each iteration of a non-linear di�usion algorithm the image data resulting
from the previous iteration is used. In the robust estimator described here we
stick to the original imagedata and only update the parameter to be estimated.
Fig. 2.5 shows the di�erences betweenthesetwo procedures.

2.3.2 Higher-order Image Structure

For the image in Fig. 2.4 the assumption of local constant image model is a correct
assumption, for most natural imagessuch a model is an oversimpli�cation though.
Then it is better to usea higher order model for the local image structure. We start
with a simple �rst order model for 1D functions. The local basis is:

� =
�

1 x
�

: (2.26)
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Figure 2.6: Robust Estimation of Lo cal Structure in 1D functions. A `saw-
tooth' function with added noise is shown together with the Gaussian linear least
squares estimate, i.e. the Gaussian smoothing (the thin `sinusoidal' line), the robust
estimate based on a zero order facet model (the dashed-dotted line) and the robust
estimate based on a �rst order model (the thick dashed line). The spatial scale is 9
and the tonal (model) scale is 0.1. The number of iterations used is 10.

This leadsto the matrix � T � m �:
� R

R Gm (f (x + y) � ai
0 � ai

1y)Gs(y)dy
R

R y Gm (f (x + y) � ai
0 � ai

1y) Gs(y) dyR
R y Gm (f (x + y) � ai

0 � ai
1y) Gs(y) dy

R
R y2 Gm (f (x + y) � ai

0 � ai
1y) Gs(y) dy

�

(2.27)
and vector � T � m f � x :

� R
R f (x + y) Gm (f (x + y) � ai

0 � ai
1y) Gs(y) dyR

R y f (x + y) Gm (f (x + y) � ai
0 � ai

1y) Gs(y) dy

�
: (2.28)

The robust estimator of the local linear model is given by Eq.(2.23). Fig. 2.6 shows
a univariate `saw-tooth' signal corrupted with additiv e noise. Also shown are the
robust estimates based on a zero order facet model and the robust estimate based
on a �rst order facet model. It is obvious that a robust estimator basedon a local
constant model is not capableof reconstructing the saw tooth signal from the noisy
observations. Using a local �rst order model leadsto a far better reconstruction.

The �rst order robust facet model is easily generalizedto 2D functions:

� =
�

� (00) � (10) � (01)
�

(2.29)

=
�

1 x1 x2
�

: (2.30)
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Figure 2.7: Robust Estimation of Lo cal Image Structure. On the left the
cameraman image with noise added and on the right the robustestimation of the zero
order coe�cient in a �rst order facet model.

This leadsto the matrix � T � m �:
0

@

R
R2 Gm Gsdy

R
R2 y1Gm Gsdy

R
R2 y2Gm GsdyR

R2 y1Gm Gsdy
R

R2 y2
1 Gm Gsdy

R
R2 y1y2Gm GsdyR

R2 y2Gm Gsdy
R

R2 y1y2Gm Gsdy
R

R2 y2
2 Gm Gsdy

1

A (2.31)

to simplify the notation we have omitted the arguments of the functions in the inte-
grand. For the Gm -function the argument is the model error f (x + y) � a00 � a10y1 �
a01y2. The vector � T � m f � x equals

0

@

R
R2 f (x + y)Gm (f (x + y) � a00 � a10y1 � a01y2)Gs(y )dyR

R2 y1f (x + y)Gm (f (x + y) � a00 � a10y1 � a01y2)Gs(y )dyR
R2 y2f (x + y)Gm (f (x + y) � a00 � a10y1 � a01y2)Gs(y )dy

1

A : (2.32)

Eq.(2.23) then can be used to calculate the new estimate of the optimal parameter
vector ai +1 .

In Fig. 2.7 the robust estimation of the zeroorder coe�cien t basedon a �rst order
facet model is shown. For this image the di�erence with a zero order facet model
estimation can only be observed in regions of slowly varying luminance (lik e in the
background).

2.3.3 Color Image Structure

In this section we generalizethe robust facet models for scalar imagesto models for
vectorial images. The analysis is done for color imagesbut is valid for all vectorial
images.

A color image f = (f 1 f 2 f 3) at any position x has three color components f 1(x),
f 2(x) and f 3(x). The local model for a color image using a basis

� = (� 1 � 2 � � � � K ) (2.33)
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Figure 2.8: Robust Estimation of Lo cal Structure in Color Images. On the
�rst row from left to right: the `Lena' image with some noise added to it, the zero-
order facet model based robust estimator of the valuesand the robust estimator based
on a �rst order based facet model. On the second row we showa detail from the image
above (see also color plate C.4).

is chosenas:
f̂ (x + y) = � A = �

�
a1 a2 a3

�
(2.34)

whereA =
�

a1 a2 a3
�

is the K � 3 parameter matrix. The column ai represents
the parameter vector in the approximation f̂i = � ai of the i -th color component.
Each of the color components is thus approximated as a linear combination of K
basis functions. The model error is now written as:

� (x) =
Z

Rd
�

� q
(f 1

� x � � a1)2 + (f 2
� x � � a2)2 + (f 3

� x � � a3)2

�
Gs(y )dy : (2.35)

It is not hard to prove that in this case

@�
@A

= 0 ( ) � T � m f = � T � m � A (2.36)

where � m is the `diagonal' operator that multiplies a function point wise with the
function: Gm

�
(f 1

� x � � a1)2 + (f 2
� x � � a2)2 + (f 3

� x � � a3)2
�
. As � m is dependent

on the parameter matrix A we arrive at a iterated weighted least squaresestimator:

A i +1 = (� T � m (A i )�) � 1� T � m (A i ) f : (2.37)
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Figure 2.9: Histograms of gradien t vector space. In (a) an image (64 � 64) is
shownwith in (b) the histogram of all gradient vectors (where darker shadesindicate
that those gradient vectors occur often in the image. In (c) a composition of two
di�er ently oriented patterns is shownwith corresponding histogram in (d).

The estimation of the robust facet model for color imagesis thus almost the sameas
for scalar images. The three color components are dealt with independently , only the
error weights operator � m is dependent on all three color components.

In Fig. 2.8 the robust estimators are shown that are basedon a zero order facet
model and on a �rst order facet model. Especially in the nose-regionthe �rst order
model basedrobust estimator performs better then the zeroorder model basedrobust
estimator.

2.4 Robust Estimation of Orien tation

In the previous sectionswe have consideredlocal image models for the image values
(grey value and color). In this sectionwe look at robust estimation of the orientation
of image structures.

Oriented patterns are found in many imaging applications, e.g. in �ngerprin t anal-
ysis, and in geo-physical analysisof soil layers. The classicaltechnique to estimate the
orientation of the texture is to look at the set of luminance gradient vectors in a local
neighborhood. In an imagepatch showing a strip e pattern in only oneorientation we
can clearly distinguish the orientation as the line cluster in gradient spaceperpendic-
ular to the strip es (seeFig. 2.9(a-b)). A straightforward eigenvector analysis of the
covariance matrix will reveal the orientation of the texture. The covariance matrix
of the gradient vectors in an image neighborhood is often used to estimate the local
orientation [37], [8], [46], [91].

In casethe local neighborhood is taken from the border of two di�eren tly oriented
patterns (seeFig. 2.9) an eigenvector analysisof the covariance matrix will mix both
orientations resulting in a `smoothing' of the orientation estimation.

In casethe regions showing di�eren t textures are of su�cien t size it is possible
to usea post-processingstep to sharpen the smoothed orientation measurements. A
classical way of doing so is the Kuwahara-Nagaooperator [43], [56], [2]. At a cer-
tain position in an image this operator searches for a nearby neighborhood where
the (orientation) response is more homogeneousthen it is at the border. That re-
sponseis then used at the point of interest. In this way the neighborhoods are not
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allowed to crossthe borders of the textured regions. In [80] we have shown that the
classicKuwahara-Nagaooperator can be interpreted as a `macroscopic'version of a
PDE image evolution that combines linear di�usion (smoothing) with morphological
sharpening.

Again consider the texture in Fig. 2.9(a). The histogram of the gradient vectors
in this texture patch is shown in Fig. 2.9(b). Let v be the true orientation vector of
the patch, i.e. the unit vector perpendicular to the strip es. In an ideal image patch
every gradient vector should be parallel to the orientation v . In practice they will not
be parallel. The error of a gradient vector g(y ) observed in a point y with respect to
the orientation v(x) of an image patch centered at location x is de�ned as:

e(x; y ) = kg(y ) � (g(y )T v(x))v (x)k: (2.38)

The di�erence g(y ) � (g(y )T v(x))v (x) is the projection of g on the normal to v . The
error e(x; y ) thus measuresthe perpendicular distance from the gradient vector g(y )
to the orientation vector v (x). Integrating the squarederror over all positions y using
a soft Gaussianaperture for the neighborhood de�nition we de�ne the total error:

� (x) =
Z



e2(x ; y )Gs(x � y )dy : (2.39)

The error measurecan be rewritten as:

� =
Z



gT gGsdy �

Z



v T (ggT )vGsdy : (2.40)

where we have omitted the arguments of the functions. Minimizing the error thus is
equivalent with maximizing: Z



v T (ggT )vGsdy ; (2.41)

subject to the constraint that v T v = 1. Note that v is not dependent on y so that
we have to maximize:

v T
� Z



(ggT )Gsdy

�
v = v T � sv (2.42)

where � s is the structure tensor.
Using the method of Lagrangemultipliers to maximize v T � sv subject to the con-

straint that v T v = 1, we needto �nd an extremum of

� (1 � v T v) + v T � sv : (2.43)

Di�eren tiating with respect to v (remember that dv T Av=dv = 2Av in caseA = AT )
and setting the derivative equal to zero results in:

� sv = � v : (2.44)

The `best' orientation thus is an eigenvector of the structure tensor. Substitution
in the quadratic form then shows that we needthe eigenvector corresponding to the
largest eigenvalue.
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The least squaresorientation estimation works well in caseall gradients in the
ensemble of vectorsin an imageneighborhood all belongto the sameoriented pattern.
In casethe image patch shows two oriented patterns the least squaresestimate will
mix the two orientations and give a wrong result.

A robust estimator is constructed by intro ducing the Gaussianerror norm once
again:

� (x) =
Z



� (e(x; y ))Gs(x � y )dy : (2.45)

In a robust estimator large deviations from the model are not taken into account very
heavily. In our application large deviations from the model are probably due to the
mixing of two di�eren t linear textures (seeFig. 2.9(c-d)).

The error, Eq.(2.45), cannow be rewritten as(we will omit the spatial arguments):

� =
Z



�

� q
gT g � v T (ggT )v

�
Gsdy : (2.46)

Again we usea Lagrangemultiplier to minimize subject to the constraint that v T v =
1:

d
dv

�
� (1 � v T v) +

Z



�

� q
gT g � v T (ggT )v

�
Gsdy

�
= 0: (2.47)

Using Eq.(2.15) as the error function leadsto

� (v )v = � v (2.48)

where

� (v ) =
Z



ggT Gm (

q
gT g � v T (ggT )v )Gsdy : (2.49)

The big di�erence with the least squaresestimator is that now the matrix � is de-
pendent on v (and on x as well). Note that � can be called a `robusti�ed' structure
tensor in which the contribution of each gradient vector is weighted not only by its
distance to the center point of the neighborhood, but also weighted according to its
`distance' to the orientation model. Weickert et al. [92] also intro duce a non linear
version of the structure tensor that is closein spirit to the robust structure tensor � .

We proposethe following �xed point iteration scheme to �nd a solution. Let v i

be the orientation vector estimate after i iterations. The estimate is then updated as
the eigenvector v i +1 of the matrix � (v i ) corresponding to the largest eigenvalue, i.e.
we solve:

� (v i )v i +1 = � v i +1 : (2.50)

The proposedscheme is a generalization of the well-known �xed point scheme (also
called functional iteration ) to �nd a solution of the equation v = F (v).

Note that the iterativ e scheme does not necessarilylead to the global minimum
of the error. In fact often we are not even interested in that global minimum. Con-
sider for instance the situation of a point in region A (with orientation � 1) that is
surrounded by many points in region B (with orientation � ). It is not to di�cult
to imagine a situation where the points of region B outnumber those in region A.
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Figure 2.10: Least Squares versus Robust Orien tation Estimation. In (a) a
generated noise free image is shown. The texture is made out of two regions each
di�er ently oriented. In (b) the orientation �eld � = arctan(v2=v1) is shown that
results from the least squares estimate. In (d) the orientation �eld is shownresulting
from the robust estimation. In (c) a detail of the orientation vector �elds for both
the least squares estimation (dotted lines) and the robust estimation (solid lines) are
shown.

Figure 2.11: Least Squares versus Robust Orien tation Estimation. Same
experiment as �gur e 10 but with noise added.

Neverthelesswe would like our algorithm to �nd the orientation � whereasthe global
minimum would correspond with orientation � . Becauseour algorithm starts in the
initial orientation estimate and then �nds the local minimum nearest to the starting
point we hopefully end up in the desired local minimum: orientation � .

The choice for an initial estimate of the orientation vector is thus crucial in a
robust estimator in casewe have an image patch showing multiple strip ed patterns.
In Fig. 2.10 and Fig. 2.11 robust estimation of orientation for a simple test image
is given. For the robust estimation we have used the orientation in location x that
resulted from the least squaresestimator asthe initial orientation vector in that point.
Only 5 iterations are used. For both examplesit is evident that the robust estimation
performs much better at the border of the textured regions.



Chapter 3

Edge and Corner Detection
by Photometric
Quasi-In varian ts �

3.1 In tro duction

Feature detection, such asedgeand corner detection, plays an important role in many
computer vision applications such as image segmentation, object recognition and im-
age retrieval [26]. A large number of feature detectors is based on the di�eren tial
structure of images[10], [27], [45]. However, in real-world applications there are var-
ious physical phenomenawhich trigger di�eren tial-based features, such as shadows,
shading, specularities, and object reectance changes. It is important to di�eren tiate
betweenthe various physical causesof a feature.

An improvement in color understanding was the intro duction of the dichromatic
reection model by Shafer [66]. The model separatesthe reected light into body
reection (object color) and surfacereection (specularities). This separation results
in the classi�cation of physical events, such as shadows and highlights. This is suited
for photometric invariant segmentation, object recognition, and retrieval [18], [38],
[51]. However, these methods are based on the zeroth order structure of images
and mostly involve the analysis of the RGB -values in color histograms. For the
photometric invariant theory to be applicable to di�eren tial-based operations other
methods are needed.

The connection between di�eren tial-based features and photometric invariance
theory is proposedby Geusebroek et al. [16]. This work provides a set of photometric
invariant derivative �lters and usesthem for invariant edgedetection. However, the
non-linear transformations usedto computephotometric invariants haveseveral draw-

� Accepted for publication by IEEE Transactions on Pattern Analysis and Machine Intel ligence
[75]
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backs such as instabilities and loss of discriminativ e power. These drawbacks limit
the applicabilit y of operations basedon derivativesof theseinvariants. Traditionally ,
the e�ect of instabilities is suppressedby ad hoc thresholding of the transformed val-
ues [28], [57]. A more elaborate approach is to apply error propagation through the
various color spacesto compensatefor the undesirede�ects of instabilities and non-
linearities of the di�eren t photometric invariant spaces [19]. However, this approach
is basedon a proper noiseestimation systemwhich is not always available in practice.

In this chapter we proposea new class of derivatives which we refer to as pho-
tometric quasi-invariants. These derivatives link derivative-basedoperations to the
theory of photometric invariance. Quasi-invariants are derived from the dichromatic
reection model and are proven to di�er from full photometric invariants by a scal-
ing factor. These quasi-invariants do not have the inherent instabilities of full pho-
tometric invariants, and from theoretical and experimental results it is shown that
quasi-invariants have better noisecharacteristics, discriminativ e power, and intro duce
lessedgedisplacement than full photometric invariants. The lack of full photometric
invariance limits the applicabilit y of quasi-invariants to methods which are basedon
a single image, such as edgeand corner detection. Quasi-invariants cannot be used
for applications in which responsesbetween multiple imagesare compared, such as
invariant object recognition.

3.2 The Dic hromatic Reection Mo del

In this section the dichromatic reection model is discussed[66]. The dichromatic
model divides the reection in the body (object color) and surfacereection (specu-
larities or highlights) component for optically inhomogeneousmaterials. Assuming a
known illuminan t, ci = (� ; � ;  )T , and neutral interface reection, the RGB vector,
f = (R; G; B )T , can be seenas a weighted summation of two vectors,

f = e(mbcb + mi ci ) (3.1)

in which cb is the color of the body reectance, ci the color of the surfacereectance,
mb and m i are scalarsrepresenting the corresponding magnitudesof body and surface
reection and e is the intensity of the light source. For matte surfacesthere is no
interface reection and the model further simpli�es to

f = embcb (3.2)

which is the well-known Lambertian reection. For more on the validit y of the pho-
tometric assumptionssee[16], [18], [66] and for calibration [19].

From the dichromatic reection model, photometric invariants can be derived
(e.g. normalized RGB , hue). These invariants have the disadvantage that they are
unstable; normalized RGB is unstable near zero intensity and hue is unde�ned on the
black-white axis. The instabilities can be avoided by analyzing the RGB valuesin the
RGB -histogram [38] [51]. That proved to be rather di�cult and slow sinceyou need
a meaningful segmentation to generate a meaningful histogram, and a meaningful
histogram to get a good segmentation.
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(a) (b) (c)

Figure 3.1: (a) Shadow-shadingdirection ĉb, (b) specular direction ĉi , and (c) hue di-
rection b̂.

Instead of looking at the zeroth order structure (the RGB -values) we focus in
this chapter on the �rst order structure of the image. A straightforward extension
of the photometric invariance theory to �rst order �lters can be obtained by taking
the derivative of the invariants. However, these �lters would inherit the undesired
instabilities of the photometric invariants. Thereforewe proposean alternativ e way to
arriveat photometric derivativesby analyzing the spatial derivativeof the dichromatic
reection model.

The spatial derivative of the dichromatic reection model ( Eq. 3.1 ) gives the
photometric derivative structure of the image:

fx = embcb
x +

�
ex mb + emb

x

�
cb +

�
emi

x + ex mi � ci : (3.3)

Here, the subscript indicates spatial di�eren tiation. Since we assumea known illu-
minant and neutral interface reection, ci is independent of x. The derivative in
Eq. 3.3 is a summation of three weighted vectors, successively causedby body re-
ectance, shading-shadow and specular change. Further, we assumethat shadows are
not signi�cantly colored.

In fact, the direction of the shadow-shading changes (Fig. 3.1a) follows from
Eq. 3.2. In the absenceof interface reection, the direction of cb coincideswith the
direction of f̂ = 1p

R 2 + G2 + B 2 (R; G; B )T . The hat is usedto denote unit vectors. The
shadow-shading direction is the multiplication of two scalarsdenoting two di�eren t
physical phenomena. First, ex mb indicates a change in intensity which corresponds
to a shadow edge. And emb

x is a changein the geometry coe�cien t which represents
a shading edge.

Another direction is the specular direction ci in which changesof the specular
geometry coe�cien t m i

x occur. In Fig. 3.1b, ci is depicted for the caseof a white
light source for which ĉi = 1p

3
(1; 1; 1)T . The specular direction is multiplied by

two factors. Firstly , emi
x is a change of geometric coe�cien t causedby changesin

the angles between viewpoint, object and light source. Secondly, the term ex mi

representing a shadow edgeon top of a specular reection.
Having the direction of two of the causesof an edge,we are able to construct a

third direction which is perpendicular to thesetwo vectors(Fig. 3.1c). This direction,
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named hue direction b̂, is computed by the outer product:

b̂ =
f̂ � ĉi

�
�
� f̂ � ĉi

�
�
�
: (3.4)

If f̂ and ĉi are parallel, we de�ne b̂ to be the zerovector. Note that the hue direction
is not equal to the direction in which changesof the body reectance occur, ĉb

x . It is
perpendicular to the two other causesof an edge. Hence,changesin the hue direction
can only be attributed to a body reectance change.

In conclusion,changesin the reection manifest themselvesasedgesin the image.
There are three causesfor an edgein an image: an hue change,a shadow-shadingedge
or a specular change. We indicated three directions: the shadow-shading direction,
the specular direction and the hue direction. These directions are the sameas the
directions indicated by Klink er [38] for to use of image segmentation. We use these
direction for the construction of photometric invariant spatial derivatives.

3.3 Photometric Varian ts and Quasi-In varian ts

In this section, the goal is to proposea new set of photometric variants and quasi-
invariants. To this end, the derivativeof an image,fx = (Rx ; Gx ; Bx )T , is projected on
three directions found in the previous section. We will call theseprojections variants.
E.g. the projection of the derivative on the shadow-shading direction results in the
shadow-shading variant. By removing the variance from the derivative of the image,
we construct a complementary set of derivativeswhich we will call quasi-invariants.

The projection of the derivative on the shadow-shading direction is called the
shadow-shading variant and is de�ned as

Sx =
�

fx � f̂
�

f̂ : (3.5)

The dot indicates the vector inner product. The secondf̂ indicates the direction of
the variant. The shadow-shading variant is the part of the derivative which could be
causedby shadow or shading. Due to correlation of the hue and specular direction
with the shadow-shading direction, part of Sx might be causedby changesin hue or
specular reection.

What remains after subtraction of the variant is called the shadow-shadingquasi-
invariant, indicated by superscript c,

Sc
x = fx � Sx : (3.6)

The quasi-invariant Sc
x consistsof that part of the derivative which is not causedby

shadow-shading edges(Fig. 3.2b). Hence,only contains specular and hue edges.
The same reasoningcan be applied to the specular direction and results in the

specular variant and the specular quasi-invariant

Ox =
�
fx � ĉi

�
ĉi ;

Oc
x = fx � Ox :

(3.7)
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(a) (b) (c) (d)

Figure 3.2: Various derivatives applied to Fig. 3.4a: a) color gradient (fx ), b)
shadow-shadingquasi-invariant (Sc

x ), c) the specular quasi-invariant (Oc
x ) , and d)

the specular-shadow-shadingquasi-invariant (H c
x ).

The specular quasi-invariant is insensitive to highlight edges(Fig. 3.2c).
Finally, we can construct the shadow-shading-specular variant and quasi-invariant

by projecting the derivative on the hue direction

H c
x =

�
fx � b̂

�
b̂ ;

H x = fx � H c
x :

(3.8)

H c
x doesnot contain specular or shadow-shading edges(Fig. 3.2d).

3.4 Relations of Quasi-In varian ts with Full In vari-
ants

In this section,the resemblancesand di�erences areanalyzedbetweenquasi-invariants
and full invariants. A geometrical relation in RGB -spacebetween the two is found
by investigating underlying color spacetransformations. Conclusionswith respect to
stabilit y are made. With stabilit y it is meant that small changesin the RGB -cube do
not causelarge jumps in the invariant space. Further, we discussthe characteristics
of quasi-invariants.

3.4.1 Spherical Color Space

An orthogonal transformation which has the shadow-shading direction as one of its
components is the spherical coordinate transformation. Transforming the RGB -color
spaceresults in the sphericalcolor spaceor r � ' -color space.The transformations are,

r =
p

R2 + G2 + B 2 = jf j
� = arctan( G

R )

' = arcsin
� p

R 2 + G2
p

R 2 + G2 + B 2

� : (3.9)

Sincer is pointing in the shadow-shading direction, its derivative corresponds to Sx

r x =
RRx + GGx + B Bxp

R2 + G2 + B 2
= fx � f̂ = jSx j : (3.10)
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(a) (b) (c) (d) (e) (f )

Figure 3.3: (a) Red-blue edge, with a decreasing intensity of the blue patch going in
the upward direction. Response of (b) normalized RGB derivative, and (c) shadow-
shading quasi-invariant (Sc

x ). (d) Red-blue edge, with decreasing saturation going in
the upward direction. Response of (e) hue derivative (hx ), and (f ) specular-shadow-
shadingquasi-invariant (H c

x ) (see also color plate C.5).

The quasi-invariant Sc
x is the derivative energy in the plane perpendicular to the

shadow-shading direction. The derivative in the � ' -plane is given by

jSc
x j =

q
(r ' x )2 + (r sin '� x )2

= r
q

(' x )2 + (sin '� x )2
: (3.11)

To conserve the metric of RGB -spacethe angular derivativesare multiplied by their
corresponding scalefactors which follow from the spherical transformation. For matte
surfacesboth � and ' are independent of mb (substitution of Eq. 3.2 in Eq. 3.9).
Hence,the part under the root is a shadow-shading invariant.

By means of the spherical coordinate transformation a relation between the
quasi-invariant and the full invariant is found. The di�erence between the quasi-

invariant jSc
x j and the full invariant sx =

q
(' x )2 + (sin '� x )2 is the multiplication

with r which is the L2 norm for the intensity (seeEq. 3.9). In geometrical terms, the
derivative vector which remains after subtraction of the part in the shadow-shading
direction is not projected on the sphere to produce an invariant. This projection
intro ducesthe instabilit y of the full shadow-shading invariants for low intensities,

lim
r ! 0

sx doesnot exist

lim
r ! 0

jSc
x j = 0:

(3.12)

The �rst limit follows from the non existenceof the limit for both ' x and � x at zero.
The secondlimit can be concluded from lim

r ! 0
r ' x = 0 and lim

r ! 0
r � x = 0. Concluding,

the multiplication of the full-in variant with jf j resolvesthe instabilit y.
An exampleof the responsesfor the shadow-shading invariant and quasi-invariant

is given in Fig. 3.3. In Fig. 3.3a, a synthetic image of a red-blue edge is depicted.
The blue intensity decreasesalong the y-axis. Gaussianuncorrelated noise is added
to the RGB channels. In Fig. 3.3b the normalized RGB responseis depicted and the
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instabilit y for low intensities is clearly visible. For the shadow-shadingquasi-invariant
(Fig. 3.3c), no instabilit y occurs and the responsejust diminishes for low intensities.
Note that the instable region is particularly inconvenient becauseshadow-shading
edgestend to produce low-intensity areas.

3.4.2 Opp onent Color Space

The orthonormal transformation which accompaniesthe specular variant is known as
the opponent color space.For a known illuminan t ci = (� ; � ;  )T it is given by

o1 = � R � �Gp
� 2 + � 2

o2 = � R + �  G� ( � 2 + � 2 )Bp
( � 2 + � 2 +  2 )( � 2 + � 2 )

o3 = �R + � G+  Bp
� 2 + � 2 +  2

: (3.13)

The relations with the variant and its complement are jOx j = o3x and jOc
x j =p

o12
x + o22

x .

3.4.3 The Hue Saturation In tensit y Space

As discussedin section 3.3 the shadow-shading-specular quasi-invariant is both per-
pendicular to the shadow-shadingdirection and the specular direction. An orthogonal
transformation which satis�es this constraint is the hue-saturation-intensity transfor-
mation. It is actually a polar transformation on the opponent color axis o1 and o2.

h = arctan
�

o1
o2

�

s =
p

o12 + o22

i = o3
: (3.14)

The changesof h occur in the hue direction and hence the derivative in the hue-
direction is equal to the shadow-shading-specular quasi-invariant,

jH c
x j = s � hx : (3.15)

The multiplication with the scalefactor s follows from the fact that for polar trans-
formations the angular derivative is multiplied by the radius.

The hue, h, is a well known full shadow-shading-specular invariant. Eq. 3.15
provides a link betweenthe derivative of the full invariant, hx and the quasi-invariant
jH c

x j. A drawback of hue is its unde�nednessfor points on the black-white axis, i.e. for
small s. Therefore the derivative of hue is unbounded. In section 3.3, we derived the
quasi-invariant as a linear projection of the spatial derivative. For theseprojections,
it holds that 0 < jH c

x j < jfx j, and hencethe shadow-shading specular quasi-invariant
is bounded. It should be mentioned that small changesround the grey axis, result
in large changesof the direction or 'color' of the derivative, e.g. from blue to red,
in both the quasi-invariant and the full invariant. However, the advantage of the
quasi-invariant is that the norm remains bounded for these cases. For example, in
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(a)

(b)

(c)

(d)

Figure 3.4: (a) Input image with superimposed two dotted lines which are plotted in
the images (c) and (d). (b) Edge classi�cation result, with white object edges,black
shadowedgesand light grey specular edges. (c),(d) The derivative strengthalong lines
indicated in (a) (see also color plate C.6).

Fig. 3.3d a red-blue edgeis depicted. The blue patch becomesmore achromatic along
the y-axis. The instabilit y for grey values is clearly visible in Fig. 3.3e whereasin
Fig. 3.3f the responseof the quasi-invariant remains stable.

3.4.4 Characteristics of Quasi-In varian ts

Full invariants are invariant with respect to a physical photometric parameter like for
instancethe geometricterm mb in the caseof normalized RGB . Hence,the �rst order
derivative responseof such invariants doesnot contain any shadow-shadingvariation.
Our approach determines the direction in the RGB -cube in which shadow-shading
edgesexhibit themselves. This direction is then usedto compute the quasi-derivative
which shareswith full invariants the property that shadow-shadingedgesare ignored.
However, the quasi-invariants is not invariant with respect to mb. For the shadow-
shading quasi-invariant subtraction from Eq. 3.3 of the part in the shadow-shading
direction cb results in

fx = emb �
cb

x � cb
x � ĉb�

(3.16)

which is clearly not invariant for mb and e. In a similar way alsothe specular-shadow-
shading quasi-invariant can be proven to be dependent on mb and e.

The dependencyof the quasi-invariants on mb and e limits their applicabilit y. They
cannot be used for applications where edgeresponsesare compared under di�eren t
circumstances, such as content based image retrieval. However, they can be used
in applications which are based on a single frame, such as shadow-edge insensitive
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imagesegmentation, shadow-shading-specular independent corner detection and edge
classi�cation.

A major advantage of the quasi-invariants is that their responseto noise is inde-
pendent of the signal. In the caseof additiv e uniform noise, the noise in the quasi
invariants is also additiv e and uniform, sinceit is a linear projection of the derivative
of the image. This means that the noise distortion is constant over the image. In
section 3.4, it was shown that the full invariants di�er from the quasi-invariants by
scaling with a signal depended factor (the intensity or saturation). And hencetheir
noise response is also signal depended. Typically the shadow-shading full invariant
exhibits high noisedistortion round low intensities while the shadow-shading-specular
full invariant has high noisedependencyfor points around the achromatic axis. This
is shown in Fig. 3.3. The uneven levels of noise throughout an image hinder further
processing.

A secondadvantage of photometric variants and quasi-invariants is that they are
expressedin the sameunits (i.e. being projections of the derivative they are in RGB -
value per pixel). This allows for a quantitativ e comparison of their responses. An
example is given in Fig. 3.4. Responsesalong two lines in the image are enlarged in
Fig. 3.4c and Fig. 3.4d. The line in Fig. 3.4c crossestwo object edgesand several
specular edges.It nicely shows that the specular-variant almost perfectly follows the
total derivative energy for the specular edgesin the middle of the line. In Fig. 3.4d
a line is depicted which crossestwo object edgesand three shadow-shading edges.
Again the shadow-shadingvariant follows the gradient for the three shadingedges.A
simple classi�cation scheme results in Fig. 3.4b. Note that full-in variants cannot be
comparedquantitativ ely becausethey have di�eren t units.

3.5 Exp erimen ts

We comparethe performanceof the quasi-invariants with the full invariants according
to the following criteria 1. stabilit y, 2. edgedisplacement and 3. discriminativ epower.
For the improved stabilit y a mathematical proof is given in chapter 3.4. Here, we will
test the invariants on edgedisplacement and discriminativ e power.

Sincethe specular quasi-invariant is well-known, and it doesnot counterpart a full
invariant, its performanceis not investigated here. The experiments were performed
with normalized RGB , c1c2c3, l1l2l3, hue, Cw and H w [16] [18]. The results for
the invariants c1c2c3, l1l2l3, Cw and H w were similar or worse than the results for
normalized RGB and hue. Therefore, we have chosennormalized RGB and hue as
exemplary for the set of invariants, and comparedthem with the quasi-invariants. Im-
plementation details of the quasi-invariants can be found in [74]. For the experiments
a white light sourceĉi = 1p

3
(1; 1; 1)T is used.

3.5.1 Edge Detection

First, we compare the edge detection performance of the quasi-invariants with the
invariants from literature. These results can also be seenas an indication of the
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Table 3.1: The displacement, � , and the percentageof missed edges," , for �ve dif-
ferent edgedetectors. Gaussian noise of standard deviation 5, and 20 was added.

loss of discrimination due to invariance. Edge detection is performed between the
1012 di�eren t colors from the PANTONE [58] color system. Every one of the 1012
di�eren t RGB -values is combined with all other RGB -values, resulting in a total of
N = 1012� 1011=2 = 511566edgesof M = 25 pixels length. The edgeposition is
determined by computing the maximum responsepath of the derivative energy in a
region of 20 pixels around the actual edge. This results in an edgeestimation which
is comparedwith the actual edge. We de�ne two error measures.First, the average
pixel displacement �,

� =

P

f x i;j ;j x i;j � x 0 j> 0:5g
jx i;j � x0j

N � M
(3.17)

in which x i;j is j -th edgepixel of the i -th edge. Becausethe actual edgeis located
betweentwo pixels displacements equal to .5 pixels are consideredasa perfect match.
The seconderror measureis the percentage of missededges," . An edgewasclassi�ed
missedas the variation over one edge,

var(i ) =
1

M

MX

j =1

�
�
�
�
�
x i;j �

1
M

X

k

x i;k

�
�
�
�
�

(3.18)

is larger than 1 pixel. For the Gaussian derivative, a scale � = 1 is chosen. The
experiments were performed with uncorrelated Gaussiannoiseof standard deviation
5, and 20.

The results are depicted in Table 3.1. For both cases,the shadow-shading and
shadow-shading-specular edges,the quasi-invariants substantially outperform the in-
variants. For comparison,the results without invariancebasedon the RGB gradient,
jfx j, are inserted. Obviously, the RGB gradient has the best discriminativ e power.
However, it will also �nd many edgeswhich are causeddue to sceneincidental events.

To provide more insight in what kind of edgeswere still detected, we computed
the averageEuclidean RGB di�erence of the missededgesfor the casewith Gaussian
noise with a standard deviation of 5. With dij = jf i � f j j the Euclidean distance
betweenpatch i and j . For the RGB gradient-basedmethod, we obtained an average
distance of d = 4:6, for the shadow-shading quasi-invariant d = 86 and d = 109 for
the shadow-shading-specular invariant.
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(a) (b) (c) (d)

Figure 3.5: (a) Input image and corner detector results based on (b) RGB gradient
(fx ), (c) shadow-shadingquasi-invariant (Sc

x ), and (d) shadow-shading-specular quasi-
invariant (H c

x ) (see also color plate C.7).

3.5.2 Photometric invarian t corner detection

Derivatives basedon full photometric invariants are, due to their instabilit y, unreli-
able input for geometrical operations such as photometric invariant corner detection,
orientation estimation, curvature estimation, etc. Quasi-invariants, on the other hand
are expected to be more stable in combination with geometrical operations. We used
the following straightforward extension of the Harris corner detector [27] for color
images

H f = f T
x fx f T

y fy � f T
x fy

2
� k(f T

x fx + f T
y fy )2: (3.19)

The overline indicates a gaussianaveraging window. The corner detection results are
given in Fig. 3.5. The shadow-shadingquasi-invariant detector doesnot �nd shadow-
shadingcornerswhereasthe shadow-shading-specular quasi-invariant also ignoresthe
specular corners.

In Fig. 3.6, the 30 most prominent Harris cornersare detected for two real world
images(Corel gallery). The detected points can be usedas interest points for object
recognition [64]. Note that the imagesbreak several of the assumptionsof the dichro-
matic reection model (Eq. 3.1). They do not have a known illuminan t, nor are they
taken with a linear acquisition system. The results for the full invariants are domi-
nated by their instabilities. The shadow-shading full invariant is unstable in the low
intensity areasand consequently �nds most of the interest points in this area. The
shadow-shading specular full invariant is unstable along the whole grey axis, which
leads to false corners in grey areas. The RGB gradient method focusseson large
RGB value changeswhich mostly coincidewith light-dark transition which are rarely
the most discriminativ e points. It is apparent that the quasi-invariants (Figs. 3.6d,h)
suppressunwanted photometric variation and focuson body reectance changesonly.

3.6 Conclusions

In this chapter we proposed a set of quasi-invariant derivatives. These derivative
�lters are combined with derivative-basedfeature detectors to perform photometric
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 3.6: (a), (e) Input images. Corner detection based on (b) RGB gradient (f x ),
(c) normalized RGB , (d) shadow-shadingquasi-invariant (Sc

x ), (f ) RGB gradient
(fx ), (g) hue ful l invariant (hx ), and (h) shadow-shadingquasi-invariant (H c

x ) (see
also color plate C.8).

invariant feature detection. Experiments show that they signi�cantly outperform
feature detection basedon full invariants on both stabilit y and discriminativ e power.



Chapter 4

Curv ature Estimation
in Orien ted Patterns
using Curvilinear Mo dels
applied to
Gradien t Vector Fields �

4.1 In tro duction

Reliable estimation of local features in digitized images is of great importance for
many image processingtasks (segmentation, analysis, and classi�cation). Depending
on the classof imagesunder investigation, knowledgeof di�eren t features is desired.
One such class of images is de�ned by Kass and Witkin [37] as oriented patterns:
patterns that exhibit a dominant local orientation. Examples are seismic,acoustic,
wood grain, interference patterns, and �ngerprin t images. Important features for
theseimagesare estimatesof local anisotropy, orientation, curvature and scale.

The structure tensor yields a robust estimator for local orientation [7] [23] [37] [87]
basedon a local gradient vector �eld. This estimator locally models the imagesas
translation invariant strokes. In addition to orientation estimation this method also
yields an anisotropy measureindicating the resemblance of the local area to a trans-
lation invariant model. This measurecan alsobe interpreted asa con�dence measure
of the estimated orientation. Both a lack of smoothness(e.g. causedby noise) and
deviations from the translation invariant model (e.g. curved oriented patterns) are
responsible for a decreaseof this con�dence measure.To distinguish betweenthe two

� This research has been performed in the Pattern Recognition Group at the Facult y of Applied
Sciences of the Delft Univ ersity of Technology and has been Published in IEEE Transactions on
Pattern Analysis and Machine Intel ligence [79]

35
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possiblecauses,we proposeda parabolic transformation, which optimizes the trans-
lation invariance after transformation [90]. This method yields a curvature estimate
for curved oriented patterns as a by-product. A shortcoming of this method is that
the proposedtransformation is not orthonormal and therefore it lacks conservation
of gradient energy. This does not allow direct comparison of the con�dence values
of di�eren t transformations. In this paper we proposea method to investigate the
resemblance of a local pattern of 2-D oriented pattern to a certain model function
(e.g. circular, parabolic). The model is represented by a parameterized transfor-
mation function of the isophotes. The method assuresthe conservation of gradient
energy, allowing us to comparecon�dence measuresof di�eren t transformations, and
especially of a parameterized transformation for di�eren t parameter values. Like in
[90], solving the parameter for best con�dence yields a closed-form estimate of the
additional free parameter, e.g. local curvature. We proposetwo curvilinear models, a
parabolic and a circular model, for the characterization of curved oriented patterns.
When the resemblance betweena model and a local image is high, the corresponding
model parameters,orientation and curvature, yield a reliable description of the local
image. The method yields features with a corresponding con�dence value. All these
estimatesare local and can be represented as feature maps.

Estimation of the curvature in oriented patterns is not trivial. Worring [94] pre-
sented an extensive comparison between curvature estimators applied to segmented
data for which the position and ordering of points along the contour have to beknown.
For noisy oriented patterns segmentation fails, making these methods useless. The
isophotes (tangential) curvature (the secondderivative along the isophotes divided
by the gradient magnitude) is segmentation-free [86][89], but also fails on these im-
ages. There are three reasonsfor this [90]: a) the gradient is zero on ridges and in
valleys; b) Increasingthe regularization scaleof directional derivativessuppressesthe
oriented pattern and reducesthe signal-to-noiseratio; c) opposite sidesof a ridge (or
valley) yield curvatures of opposite sign, which cancelout after averaging. The only
two methods which do yield a curvature estimate for oriented patterns are either very
computationally demanding [83] or are not accompaniedby a con�dence measure,
which makesthem hard to rely on [88].

The proposedmethod resemblesa method for the detection of complexsymmetries
as presented by Bign [6][7][24]. He characterizessymmetries by (coordinate-) trans-
formation functions, which transform symmetric patterns into translation invariant
patterns. The successof such a transformation is determined by the con�dence mea-
sure of the structure tensor applied to the transformed image. A high con�dence
value is an indicator for the presenceof the corresponding symmetry. Bign's method
is an extension of the generalizedHough transform. Detection of a symmetry pat-
tern involvesaccumulation of evidenceby voting. Bign's symmetry detector requires
two orthonormal transformation functions. It measuresthe resemblance of the local
di�eren tial �eld to two perpendicular di�eren tial �elds (indicating the symmetry),
whereasour method looks at the resemblance of the local di�eren tial �eld to only
one di�eren tial �eld (representing the shape of the isophotes). This di�erence allows
us to estimate model parameters by optimizing the resemblance between the actual
di�eren tial �eld and a model di�eren tial �eld in a closed-formsolution, i.e., omitting



4.2. Orien ted Patterns 37

a time consuming voting scheme. This is not possible with the symmetry method
since neither one of the two di�eren tial �elds is preferred. The requirement for two
orthonormal transformation functions posesan unnecessarylimitation to the sym-
metries. For example, such a set of functions doesnot exist for the parabolic model
we propose, i.e. parabolic isophotesalong a linearly increasing symmetry axis. We
extend his method by noting that only the existenceof the di�eren tial �elds of the
two transformation functions is essential.

4.2 Orien ted Patterns

A oriented pattern m (x; y) can be written as a real one dimensional function g of a
model function u

m (x; y) = g(u (x; y; a)) : (4.1)

The model function u (x; y; a) describesthe shapeof the isophotesand a contains local
isophotesparameters such as orientation and curvature. Consequently , the gradient
(di�eren tial �eld) of m

r m =
dg
du

r u (4.2)

is a dg
du weighted version of the gradient of u. In oriented patterns we distinguish

betweentwo perpendicular orientations; along the isophotes(tangent), and along the
gradient. Note that orientation is de�ned on the interval [0; � i . Consequently , vectors
in opposite directions have the sameorientation.

Consider the function f (x; y) representing a local image (window) and a model
function u (x; y; a). It is of interest to what extent f (x; y) is described by the model
function u (x; y; a). This is measuredby decomposing the derivative energyof f (x; y)
into two contributions, one parallel and one perpendicular to the normalized di�er-
ential �eld of u (x; y; a). This results in the following energies

E f (a) =
RR�

r f � r u (a)
kr u(a)k

� 2
dx dy

E r (a) =
RR�

r f � ( r u (a) )?
kr u(a)k

� 2
dx dy

(4.3)

where E f (a) denotesthe �t energy and E r (a) the residual energy. The subscript ?
indicates a rotation of 90� of the vector and the integrals represent the averagingover
the local image. A quality measureof the �t can be found by comparing the �t energy
with the residual energy. Since no a-priori knowledge exists to interpret the energy
di�erence between the �t and the residual energy, we normalize the di�erence with
the total gradient energy to obtain the following quality measurec(a)

c(a) =
E f (a) � E r (a)
E f (a) + E r (a)

� 1 � c � 1: (4.4)

The value of c(a) varies from � 1 for a pattern of which the isophotes are exactly
perpendicular to those of the model function u (x; y; a) and +1 for a pattern which



38 Chapter 4. Curv ature Estimation in Orien ted Patterns Using Curvilinear Mo dels

is exactly described by the model function. The isotropic noiseenergy is distributed
equally betweenthe �t and the residual energy.

More important than the quality measurefor an arbitrary a is to know which a
maximizes the quality function c, i.e. maximizes E f and minimizes E r . The vector
a contains model parameterswhich describe local features. Therefore optimizing the
con�dence function c corresponds to feature estimation. Furthermore, the quality
measurec(a) informs us about the successof the �t and can be seenas a con�dence
measureof the estimatedfeatures. Besidescomparingcon�dencemeasuresof the same
model function, it is also possibleto comparecon�dence measuresof di�eren t model
functions. Note that the normalization of the con�dence measuresis independent of
the model function. By comparing optimized con�dence functions of various models
one can �nd out which model describesthe local pattern best.

Usually the complexity of the con�dence function does not allow a closed-form
solution of the optimization criterion. The straight model is an exception. In the
case of curvilinear models, we avoid costly (iterativ e) optimization procedures by
consideringapproximate con�dence functions, which do allow closed-formsolutions.

4.3 Straigh t-Orien ted Patterns

Locally, many oriented patterns can be characterized by a straight model. For such
a pattern the model function u (x; y; a) is given by

u (x; y; � ) = x cos� + y sin � (4.5)

with � the orientation perpendicular to the model isophotes. Substituting this in Eq.
(3) yields

E f (� ) = 1
2

�
f 2

x + f 2
y

�
+ 1

2

�
f 2

x � f 2
y

�
cos2� + 1

2 2f x f y sin2�: (4.6)

A bar (:) denotesan averagedquantit y and will from now on replace the integrals
responsible for averaging over a local image. The con�dence value c(� ) is

c(� ) =
1

f 2
x + f 2

y

��
f 2

x � f 2
y

�
cos2� + 2f x f y sin2�

�
(4.7)

c(� ) can be maximized as a function of the orientation � . This yields the following
(gradient-based) orientation estimator[8][23] [37][87]

� opt = 1
2 arctan

2f x f y

f 2
x � f 2

y

(4.8)

with con�dence value c(� opt )

c(� opt ) =
d2

g2 where d4 = f 2
x � f 2

y
2

+ 2f x f y
2
: (4.9)
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This con�dencemeasurecanalsobeinterpreted asa measurefor translation invariance
and shows an intuitiv e dependencyto the pattern orientation � opt .

c(� ) =
d2

�
cos2 (� � � opt ) � sin2 (� � � opt )

�

g2 = 1
2 c(� opt ) (1 + cos(2 (� � � opt )) ) :

(4.10)
The maximum of the con�dence measurec(� opt ) reducesdue to noise in the local
imagef . For a linear pattern p distorted by additiv e uncorrelated noisen (f = p+ n)
the con�dence value c(� opt ) is

c(� opt ) =
d2

kr f k2
=

d2

kr p + r nk2
=

d2

kr pk2

kr pk2

kr pk2 + kr nk2
: (4.11)

Note that the gradient noise energy is divided equally over E f and E r . Therefore
the numerator of c is una�ected by noise. Noise increasesthe total gradient energy
(denominator of c), which lowers the con�dence value c(� opt ). Another reasonfor a
lower con�dence value is a deviation betweenthe local imageand the model function.
For instance when curved lines occur, then curvature will contribute to E r . In the
next section we will extend the model to include curved patterns.

4.4 Curv ed Orien ted Patterns

We present two model functions, which locally model curved oriented patterns. A
parabolic model

u (x; y; �; � ) = 1
2 �w 2 � v (4.12)

and a concentric circle model

u (x; y; �; � ) =
q

� 2w2 + (1 � �v )2 (4.13)

in which � is the curvature. The Gaugecoordinates v; w are obtained by

v = x cos� + y sin � w = � x sin � + y cos�: (4.14)

Herewe discussthe parabolic approximation. For the circular approximation we refer
to appendix A. Using the parabolic model function and Eq. (3) the following energies
are obtained

E f (�; � ) =
�

� 2 w 2 f 2
w � 2�w f w f v + f 2

v
1+ � 2 w 2

�

E r (�; � ) =
�

� 2 w 2 f 2
v +2 �w f v f w + f 2

w
1+ � 2 w 2

� (4.15)

wheref v and f w are the derivativesin respectively the v and w direction. Finding the
curvature and orientation that maximize the con�dence function requiresa search in
�; � -space. In this paper we shall not further investigate this method due to its high
computational demands. Instead we propose a way to approximate the con�dence
function, allowing a fast closed-formsolution.
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An approximation to the orientation � can be obtained by looking at the axis of
minimal translation invariance for parabolic and circular patterns. In the caseof a
circular pattern this is the v-axis. For a parabolic pattern it dependson the curvature
and the window size used. For small curvatures (i.e. compared to the window size)
the minimal translation invariant axis is equal to the v-axis. Increasingthe curvature
the axis of minimal translation invariance jumps to the w-axis. Therefore an approx-
imation of the orientation neededto determine the v and w-axesin the Eq. (15) can
be computed with Eq. (8). After substituting the orientation, the resulting equations
only depend on the curvature. Iterativ e maximization of the con�dence function in
� -spaceis still time-consuming. We proposeto approximate this maximum by using
locally adapted weighting. The weighting function of E f and E r (denoted by the bar
(:) ) is on its turn weighted by

�
1 + � 2w2

�
after which we normalize for this weighting.

This mathematical tric k has a high resemblance to normalized convolution [39]. It
results in

Ê f (� ) = � 2 w 2 f 2
w � 2� w f w f v + f 2

v

1+ � 2 w 2

Ê r (� ) = � 2 w 2 f 2
v +2 � w f w f v + f 2

w

1+ � 2 w 2
:

(4.16)

A hat (̂: ) above a quantit y indicates an approximation. Sincethe �t energyE f might
be a function of the coordinate w, as is the adapted weighting function, optimization
lead to a false curvature estimate. Therefore minimization of the residual energy E r

is usedto �nd the following closed-formcurvature estimate

�̂ =
w2f 2

v � w2 � f 2
w �

r

4w2 � wf w f v
2

+
�

� w2f 2
v + w2 � f 2

w

� 2

2w2 � wf w f v

: (4.17)

The con�dence measurecan now be computed in two di�eren t ways. The con�dence
measurec(�; � ) has its maximum at (� opt ; � opt ). To avoid an iterativ e search for
this optimum one can compute c(�̂; �̂ ) by substituting �̂ and �̂ in Eqs (15) and (4).
Note that estimates �̂ and �̂ do not have to be equal to the values of � and � that
optimize the con�dence function. However, computing c(�̂; �̂ ) is still expensive. A
signi�cant speed-upcan be obtained by approximating the con�dence measureusing
the approximate energiesof Eq. (16).

ĉ (�; � ) =
Ê f (�; � ) � Ê r (�; � )

Ê f (�; � ) + Ê r (�; � )
: (4.18)

Again, one can avoid an iterativ e search by substituting �̂ and �̂ in Eq. (18), which
yield ĉ(�̂; �̂ ). The curvature estimator in Eq. (17) is the tangential or isophote cur-
vature. The normal (or gradient o w line) curvature can be computed by exchanging
the v and w coordinates in Eqs (12) and (13).



4.5. Implemen tation 41

4.5 Implemen tation

Direct computation of the curvature and the con�dence measureis a space-variant op-
eration. This yields a high computational demand. Fortunately, Eqs (16) to (18) can
becalculatedwith global convolutions, which canbe implemented by multiplication in
the Fourier-domain. This yields a substantial reduction in computational complexity.
The derivatives f x and f y are implemented as regularized derivative �lters.

f x � f (x; y) 

@g(x; y; � g)

@x
F$ j ! x

~f (! x ; ! y ) ~g(! x ; ! y ; � g) (4.19)

with ~f the Fourier transform of f and g(x; y; � g) a Gaussianregularization function
of scale� g

g(x; y; � g) =
1

2� � 2
g

e� (x 2 + y2 )=2� 2
g

F$ ~g(! x ; ! y ; � g) = e� 1
2 (! 2

x + ! 2
y ) � 2

g : (4.20)

The terms of the curvature estimator and the con�dence measure,Eqs (16)-(17) , are
expandedin Appendix B (the circular model is treated in appendix A). The remaining
terms xpyqf r

x f s
y are conveniently calculated as multiplications in the Fourier domain

xpyqf r
x f s

y = u (p;q; � a) 
 f r
x f s

y
F$ ~u(p;q; � a)F

�
f r

x f s
y

	
: (4.21)

For the window function we choosea Gaussianof scale� a . The Fourier transform of
the �lter u is

u (p;q; � a) � xpyqg(x; y; � a)
F$ ~u(p;q; � t ) � j p+ q @p+ q~g(! x ; ! y ; � a)

@! p
x @! q

�
: (4.22)

Due to the high frequencycharacter of oriented patterns � g should be kept small, i.e.
tuned to the frequencycharacteristics of the cross-sectionof a line. Noisesuppression
is accomplishedby averaging all terms by Gaussianwindow (size � a), i.e. the sizeof
the curvilinear model.

4.6 Exp erimen ts

In this sectionthe proposedalgorithms are tested on synthetic and real-world images.
The feature extraction, which we presented, is based upon �nding a maximum of
the con�dence measurein parameter spacec(a). The curvature of oriented patterns
corresponds to the position of the maximum in c(�; � ). To avoid searching �; � -space
the approximations �̂ and �̂ are proposed. With these an approximated con�dence
measureĉ and the exact con�dence measurec may be computed. The goal of the
experiments is to investigatethe performanceof theseapproximations asa function of
the curvature. Also the robustnesswith respect to the noiseis checked. The tests are
performed on a concentric circle image f (x; y) = sin

� p
x2 + y2 + '

�
+ n (seeFig. 1)

in which n = N
�
0; � 2

n

�
and ' a phase-termset randomly for every noise-realization.
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Figure 4.1: Con�dence measure c(�̂; �̂ ) of circular, parabolic, and straight line models
on a noise-free pattern of concentric circles.

For the signal-to-noiseratio we use SN R = 10 log
�
h2

�
� 2

n

�
where h is the contrast

di�erence and � n the standard deviation of the noise. Be aware that the proposed
algorithms are basedon the gradient energy of the local image. Thus an increaseof
the pattern frequencywill usually result in a higher SNR (gradient energyvs. �ltered
noisevariance) and thereforea better performance. All experiments on the concentric
circle image are basedon 100 measurements. Unlessmentioned otherwise the sigma
sizesare � g = 1:0 and � a = 5:0.

4.6.1 Con�dence measure as selection criterion

The importance of choosing the right model is illustrated in Fig. 1, which shows
the con�dence measuresof the circular, parabolic and the straight model applied
to a noise-freepattern of concentric circles. It is clear that for high curvatures the
deviation of the straight and the parabolic model form the circle pattern results in a
signi�cantly lower value of the con�dence measure.

4.6.2 Bias of the Actual Con�dence Measure

To investigate to what extent the optimum of the con�dence function in �; � -spaceis
found, we compare the averagecon�dence measureof the circular model applied to
curved patterns with the averagecon�dence measureof a straight model applied to
straight pattern. Both imageshave identical signal-to-noise ratios. The con�dence
measure c(�; � ) of a curvilinear model can be slightly higher than the con�dence
measure of a straight model. This slight increase is caused by the fact that the
curved model allows for two parameters to adjust to the noise.

The averagecon�dence measurec(�̂; �̂ ) of the circular model applied to the con-
centric circles is depicted in Fig. 2 for three SNR's (20dB, 10dB, 6dB). It clearly
shows that for small radii the averagecon�dence measurec(�̂; �̂ ) decreases.This is
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causedby an increasing discrepancybetween the approximated (�̂; �̂ ) and the opti-
mal (� opt ; � opt ) for small radii. Note, c(� opt ; � opt ) does not decreasefor small radii.
Fig. 2b indicates the variation around the averagecon�dence measurefor the straight
model. Increasing the window size(local image) reducesthe variation in exchangeof
a further decreaseof c(�̂; �̂ ) for small radii.

4.6.3 Appro ximation Error of the Con�dence Measure

In section 4 we presented two methods for computing the con�dence measure, the
actual con�dence measurec(�̂; �̂ ) and an approximation ĉ(�̂; �̂ ). In Fig. 3 the rms
(root-mean-square)error due to this approximation is depicted for the circular and
the parabolic model. For both modelstheseerrors are small. Only for high curvatures
(small radii) it may be worthwhile to compute the actual con�dence measure.

4.6.4 Robustness of the Curv ature Estimator

It is important to test the robustnessof the curvature estimation. In Fig. 4, the
noisesensitivity of the parabolic and circular curvature estimators are depicted. Both
modelswereapplied to the concentric circles. The coe�cien t-of-variation (CV = � / � )
of both models are similar for the middle and high SNR's, but the parabolic models
performs better for low SNR's. Considering the advantage of the circular curvature
estimator due to the exact match betweenthe model and the pattern, we show that
parabolic curvature estimator su�ers less from the approximations. The parabolic

(a) (b)

Figure 4.2: (a) Averagecon�dence measure c(�̂; �̂ ) for the circular model asa function
of the radius for three di�er ent SNRs (top to bottom: 20 dB, 10 dB, 6 dB). The
measure c(�̂; �̂ ) yields a small bias for small radii. The horizontal lines indicate the
average con�dence measure for the straight-line model for the corresponding SNR.
(b) Probability density functions of the con�dence measures for the straight-oriented
patterns for the three di�er ent SNRs (top to bottom: 20 dB, 10 dB, 6 dB).
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(a) (b)

Figure 4.3: Rms error between the actual con�dence measure and its approximation
as a functioin of the radius. (a) Approximate parabolic model applied to concentric
circle pattern of various SNR (top-to-bottom: 6dB, 10 dB, 20 dB). (b) Approximate
circular model applied to concentric circle patterns of various SNR (top-to-bottom:
6dB, 10 dB, 20 dB).

curvature estimator performs at least as well over a wide range of curvatures. Only
for high curvatures the circular model can take advantage of the exact match. In
practice, one can compute the curvature corresponding to both models. The one
with the highest con�dence measureis preferred becauseits model yields a better
description of the data.

4.6.5 Application of Curvilinear Mo dels to Real-W orld Data Sets

In Fig. 5 an interference pattern, together with the curvature and con�dence esti-
mation for both the parabolic and circular model, is depicted. As expected, the
parabolic model fails in the middle of the ellipses as indicated by an abrupt drop
of the con�dence measure. The circular con�dence measurehardly decreasesfor the
circles at the top and the bottom of the image. For the atter ellipseson the left and
the right the mismatch between the model and the pattern is slightly larger. In the
di�erence image between the circular and parabolic con�dence measures,the lighter
areasindicate a better description of the circular model whereasin the darker areas
the parabolic model yields a better �t. The slightly darker lines denote an almost
perfect parabolic line pattern.

The estimated local curvature of a �ngerprin t and a CT cross-sectionof a tree-
trunk are depicted in Fig. 6. Both curvilinear models produced similar results. The
dark lines in the logarithmically stretched curvature imagesdenote locally straight
patterns. Both peaksin the �ngerprin ts curvature correspond to important minutia
for �ngerprin t recognition [35] [49]. The curvature estimation can be usedto improve
(to prevent jumping the rails) the ridge tracking [35], which is already basedon orien-
tation estimation. The high con�dence measures(white areasin con�dence images)
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(a) (b)

(c) (d)

Figure 4.4: Curvature estimators using curvilinear models: black line = parabolic
model, gray line = circular model. (a), (b) and (c) Coe�cicient-of-variation (CV) for
the parabolic and circular model-based curvature estimators for di�er ent SNR (20 dB,
10 dB, 6 dB). (d) Bias of parabolic and circular model based curvature estimators
(SNR = 10 dB) (thick gray line indicates the noise-free bias of curvature using the
parabolic model).

indicate a perfect �t of the model and a reliable curvature estimate.

4.7 Conclusions

In this paper we present a method to comparea local image with a model function.
A quality measureindicates the resemblance betweenthe local image and the model
function. Feature extraction is obtained by optimization of the quality function as a
function of the parameters,which represent the feature. The quality function is inter-
preted asa con�dence measurefor the measuredfeatures. We proposetwo curvilinear
modelsto describe curvedoriented patterns. To avoid searching �; � -spacewe propose
closed-form solution for approximations to the actual parameters of the curvilinear
models �̂ and �̂ . Instead of the exact con�dence measurec(�̂; �̂ ) an approximation
ĉ(�̂; �̂ ) can be computed resulting in a huge reduction in computational demand. We
demonstrate that these approximations yield good results for almost all curvatures.
Only for the highest curvatures one might decideto compute c( �̂; �̂ ) , or (even more
computationally demanding) to iterate in �; � -spacefor c(� opt ; � opt ).
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(a) (b) (c)

(d) (e) (f )

Figure 4.5: (a) Interference pattern of vibrating plate. The superimposed circle denotes
the size of the curvilinear model. (b) and (c) Con�dence measures for, respectively,
the circular and parabolic model (range [0; 1]) computed with � g = 1:0 and � a =
5:0. (d) Di�er ence in con�dence measure between circular and parabolic model (range
[� 0:5; 0:5]). (e),(f ) Estimated curvatures �̂ for respectively the circular and parabolic
model (log stretched).

4.8 App endix A

For a concentric circle model, u (x; y; �; � ) =
q

� 2w2 + (1 � �v )2 , the �t and residual
energiesare

E f (� ) =
�

(1 � �v )2 f 2
v � 2�w (1 � �v ) f v f w + � 2 w 2 f 2

w
(1 � �v )2 + � 2 w 2

�

E r (� ) =
�

(1 � �v )2 f 2
w +2 �w (1 � �v ) f v f w + � 2 w 2 f 2

v
(1 � �v )2 + � 2 w 2

�
:

(4.23)

To obtain a closed-form solution for the curvature and the con�dence measure,the
local energiesare computed inside a

�
� 2w2 + (1 � �v )2

�
-weighted space-variant win-

dow. This yields

Ê f =
� 2 (v2 f 2

v +2 vwf v f w + w 2 f 2
w )+2 � ( � v f 2

v � w f v f w )+ f 2
v

1� 2� v+ � 2 (v2 + w 2 ) � A� 2 +2 B � + C
1+ D � 2

Ê r =
� 2 (v2 f 2

w � 2vw f v f w + w 2 f 2
v )+2 � ( � v f 2

w + wf v f w )+ f 2
w

1� 2� v+ � 2 (v2 + w 2 ) � E � 2 +2 F � + G
1+ D � 2

(4.24)
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(a) (b) (c)

(d) (e) (f )

Figure 4.6: (a) Fingerprint image. (b) CT image of trunk. (c),(d) The estimated
curvature �̂ using parabolic model (log stretch) at � g = 1:0 and � a = 5:0. (e) and (f )
The con�dence measure of the parabolic model (range [0; 1]).

with v = 0. The minimization of the residual energy yields an approximation of the
curvature

�̂ =
E � GD �

q
4F 2D + (� E + GD )2

2F D
: (4.25)

The terms of Ê f and Ê r are expandedwith Eq. (14) and

f v = f x cos� + f y sin � f w = � f x sin � + f y cos�: (4.26)

This results in

8
>>>>>>>>>><

>>>>>>>>>>:

A = x2f 2
x + 2xyf x f y + y2f 2

y

B = �
�

xf 2
x + yf x f y

�
cos� �

�
xf x f y + yf 2

y

�
sin �

C = f 2
x cos2 � + 2f x f y cos� sin � + f 2

y sin2 �
D = 2� 2

a

E = x2f 2
y � 2xyf x f y + y2f 2

x

F =
�

yf x f y � xf 2
y

�
cos� +

�
xf x f y � yf 2

x

�
sin �

G = f 2
y cos2 � � 2f x f y cos� sin � + f 2

x sin2 �

(4.27)



48 Chapter 4. Curv ature Estimation in Orien ted Patterns Using Curvilinear Mo dels

The averagedterms can be computed as global convolutions (seesection on Imple-
mentation). The approximated con�dence function is computed with

ĉ =
� 2(A � E ) + 2� (B � F ) + (C � G)
� 2(A + E) + 2� (B + F ) + (C + G)

: (4.28)

4.9 App endix B

The terms for the parabolic con�dence measure(Eq (16)) and curvature estimator
(Eq. (17)) are
8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

w2f 2
w = � 2

�
xyf 2

y + y2f x f y

�
cos3 � sin � +

�
x2f 2

y + 4xyf x f y + y2f 2
x

�
cos2 � sin2 �

+2
�

� x2f x f y � xyf 2
x

�
cos� sin3 � + x2f 2

x sin4 � + y2f 2
y cos4 �

w2f 2
v = � 2

�
xyf 2

x � y2f x f y

�
cos3 � sin � +

�
x2f 2

x � 4xyf x f y + y2f 2
y

�
cos2 � sin2 �

+2
�

x2f x f y � 2xyf 2
y

�
cos� sin3 � + x2f 2

y sin4 � + y2f 2
x cos4 �

wf v f w = yf x f y cos3 � +
�

� xf x f y � y
�
f 2

x � f 2
y

� �
cos2 � sin �

+
�

x
�
f 2

x � f 2
y

�
� yf x f y

�
cos� sin2 � + xf x f y sin3 �

w2 = � 2
a

(4.29)
for f 2

v and f 2
w seeterm C and G in appendix A.



Chapter 5

Robust Photometric In varian t
Features from the Color
Tensor �

5.1 In tro duction

Di�eren tial-based features such as edges,corners, and salient points, are usedabun-
dantly in a variety of applications such as matching, object recognition, and object
tracking [26], [64], [67]. We distinguish betweenfeature detection and feature extrac-
tion. Feature detection aims at �nding the position of featuresin the images,whereas
for feature extraction, a position in the imagesis described by a set of features,which
characterize the local neighborhood. Although the majorit y of imagesis recorded in
color format nowadays, computer vision research is still mostly restricted restricted to
luminance-basedfeature detection and extraction. In this chapter we focus on color
information to detect and extract features.

In the basicapproach to color imagesthe gradient is computedfrom the derivatives
of the separate channels. The derivatives of a single edge can point in opposing
directions for the separatechannels. DiZenzo [11] arguesthat a simple summation of
the derivatives ignores the correlation between the channels. This also happens by
converting the color imageto luminancevalues. In the caseof isoluminanceof adjacent
color regions it will lead to cancellation of the edge. As a solution to the opposing
vector problem, DiZenzo proposesthe color tensor for color gradient computation.

The sameproblem as occurs for color image derivatives, exists for oriented pat-
terns (e.g. �ngerprin t images). Due to the high frequencynature of oriented patterns
opposing derivative vectors occur in a small neighborhood. The samesolution which
was found for color image features, is usedto compute features for oriented patterns.
Kassand Witkin [37] derived orientation estimation from the structure tensor. Adap-

� Accepted for publication by IEEE Transactions on Image Processing [76]
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tations of the tensor lead to a variety of features,such ascircle detectorsand curvature
estimation [6], [8], [24], [79]. Lee and Medioni [44] apply the structure tensor within
the context of perceptual grouping.

A step forward in the understanding of color imageswasmadeby the dichromatic
reection model by Shafer [66]. The model describeshow photometric changes,such
as shadows and specularities, a�ect the RGB -values. On the basis of this model,
others provided algorithms invariant to various photometric events such as shadows
and specularities [17], [38]. The extension to di�eren tial photometric invariance was
investigated by Geusebroek et al. [16]. In chapter 3 we intro duced the photometric
quasi-invariants which are a set of photometric invariant derivativeswith better noise
and stabilit y characteristics comparedto existing photometric invariants. Combining
photometric quasi-invariants with derivative basedfeature detectors leadsto features
which can identify various physical causes,e.g. shadow cornersand object corners. A
drawback of the quasi-invariants is that they can only be applied for feature detection.
In the caseof feature extraction, where the valuesof multiple frames are compared,
full invariance is necessary.

We proposea framework to combine the di�eren tial based-featureswith the pho-
tometric invariance theory. The framework is designedaccording to the following
criteria: 1. features must target the photometric variation neededfor their applica-
tion. To achieve that accidental physical events, such as shadows and specularities,
will not inuence results. 2. featuresmust be robust against noiseand should not con-
tain instabilities. Especially for the photometric invariant features instabilities must
be dissolved. 3. physically meaningful featuresshould be independent of the acciden-
tal choiceof the color coordinate frame. Next to satisfying the criteria the framework
shouldalsobegenerallyapplicable to existing features. To meet thesecriteria westart
from the observation that tensorsare well-suited to combine �rst order derivativesfor
color images. The �rst contribution is a novel framework that combines tensor-based
featureswith photometric derivativesfor photometric invariant feature detection and
extraction. The secondcontribution is that for feature extraction applications, for
which quasi-invariants are unsuited, we proposea new uncertainty measurewhich ro-
busti�es the feature extraction. The third contribution is that the proposedfeatures
are proven to be invariant with respect to color coordinate transformations.

The chapter is organizedasfollows. In section2, the prerequisitesfor color feature
detection from tensorsarediscussed.In section3, an uncertainty measureis proposed.
Basedon this uncertainty measurerobust photometric feature extraction is derived.
In section 4, a overview of tensor-basedfeatures is given. Section 5, provides several
experiments and section 6 contains the concluding remarks.

5.2 Tensor-Based Features for Color Images

The extensionof di�eren tial-based operations to color imagescan be done in various
ways. The main challengeto color feature detection is how to transform the 3D-color
di�eren tial structure to a representation of the presenceof a feature. In this sectionwe
ensurethat the transformation agreeswith the criteria mentioned in the intro duction.
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Figure 5.1: (a) The subspace of measured light in the Hilbert space of possiblespec-
tra. (b) The RGB coordinate systemand an alternative orthonormal color coordinate
systemwhich spans the samesubspace (see also color plate C.9).

In section 5.2.1 the invariance with respect to color coordinate transformation is
discussed.In section5.2.2 the transformation is written in tensor mathematics which
links it with a set of tensor based features, thereby ensuring generality. In section
5.2.3 the photometric invariance of the transformation is discussed.

5.2.1 In variance to Color Coordinate Transformations

From a physical point of view only featuresmake sensewhich are invariant to rotation
of the coordinate axes. This starting point has been applied in the design of image
geometry features,resulting in, for example,gradient and Laplaceoperators [14]. For
the designof physically meaningful color featuresnot only the invariancewith respect
to spatial coordinate changesis desiredbut also the invariance with respect to color
coordinate systemsrotations. Featuresbasedon di�eren t measurement deviceswhich
measurethe samespectral spaceshould yield the sameresults.

For color images,valuesare represented in the RGB coordinate system. In fact,
the in�nite-dimensional Hilb ert spaceis sampled with three probes which results in
the red, green and blue channels (seeFig. 5.1). For operations on the color coordi-
nate system to be physically meaningful they should be independent of orthonormal
transformation of the three axes in Hilb ert space. An example of an orthonormal
color coordinate system is the opponent color space(seeFig. 5.1b). The opponent
color spacespansthe samesubspaceas the subspacede�ned by the RGB -axesand
henceboth subspacesshould yield the samefeatures.

5.2.2 The Color Tensor

Simply summing di�eren tial structure of various color channels may result in can-
cellation even when evident structure exists in the image [11]. Rather than adding
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the direction information (de�ned on [0; 2� i ) of the channels, it is more appropriate
to sum the orientation information (de�ned on [0; � i ). Such a method is provided
by tensor mathematics for which vectors in opposite directions reinforce oneanother.
Tensorsdescribe the local orientation rather than the direction. More precisely, the
tensor of a vector and its 180� rotated counterpart vector are equal. It is for that
reasonthat we usethe tensor as a basis for color feature detection.

Given an image f , the structure tensor is given by [8]

G =
�

f 2
x

f x f y

f x f y f 2
y

�
; (5.1)

where the subscripts indicate spatial derivativesand the bar (�:) indicates convolution
with a Gaussian �lter. Note that there are two scalesinvolved in the computation
of the structure tensor. Firstly , the scale at which the derivatives are computed
and secondly the tensor-scalewhich is the scaleat which the spatial derivatives are
averaged.The structure tensor describesthe local di�eren tial structure of images,and
is suited to �nd features such as edgesand corners [6], [11], [24]. For a multichannel
image f =

�
f 1; f 2; :::; f n

� T
, the structure tensor is given by

G =
�

fx � fx fx � fy

fy � fx fy � fy

�
: (5.2)

In the casethat f = (R; G; B ), Eq. 5.2 is the color tensor. For derivativeswhich are
accompaniedwith a weighting function, wx and wy , which appoint a weight to every
measurement in fx and fy , the structure tensor is de�ned by

G =

0

B
@

w 2
x f x � f x

w 2
x

wx wy f x � f y

wx wy

wy wx f y � f x

wy wx

w 2
y f y � f y

w 2
y

1

C
A : (5.3)

In section 5.2.1, we discussedthat physically meaningful featuresshould be invariant
with respect to rotation of the color coordinates axes. The elements of the tensor are
known to be invariant under rotation and translation of the spatial axes. To prove
the invariant, we usethe fact that @

@x Rf = Rf x , where R is a rotation operator,

(Rf x )T Rf y = f T
x R T Rf y = f T

x f y : (5.4)

where we have rewritten the inner product according to f � f = f T f

5.2.3 Photometric In varian t Deriv ativ es

A good motivation for using color images is that photometric information can be
exploited to understand the physical nature of features. For example, pixels can be
classi�ed asbeing from the samecolor but having di�eren t intensitieswhich is possibly
causedby a shadow or shadingchangein the image. Further, pixels di�erences canalso
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indicate specular reection. For many applications it is important to distinguish the
sceneincidental information from material edges. When color imagesare converted
to luminance this photometric information is lost [18].

The incorporation of photometric invariance in Eq. 5.2 can be obtained by using
invariant derivatives to compute the structure tensor. In chapter 3 we derive pho-
tometric quasi-invariant derivatives and full invariant derivatives. Quasi-invariants
di�er from full invariants by the fact that they are variant with respect to a physical
parameter. Full invariants can be computed from quasi-invariants by the normaliza-
tion with a signal dependent scalar. The quasi-invariants have the advantage that
they do not exhibit the instabilities common to full photometric invariants. However
the applicabilit y of the quasi-invariants is restricted to photometric invariant feature
detection. For feature extraction full photometric invariance is desired.

The dichromatic model divides the reection in the interface (specular) and body
(di�use) reection component for optically inhomogeneousmaterials [66]. We assume
white illumination, i.e. smooth spectrum of nearly equal energy at all wavelengths,
and neutral interface reection. For the validit y of the photometric assumptionssee
[16], [66]. The RGB vector, f = (R; G; B )T , can be seenas a weighted summation of
two vectors,

f = e(mbcb + mi ci ); (5.5)

in which cb is the color of the body reectance, ci the color of the interface reectance
(i.e. specularities or highlights), mb and m i are scalarsrepresenting the corresponding
magnitudes of reection and e is the intensity of the light source. For matte surfaces
there is no interface reection and the model further simpli�es to

f = embcb: (5.6)

The photometric derivative structure of the image can be computed by computing
the spatial derivative of Eq. 5.5

fx = embcb
x + (ex mb + emb

x )cb +
�
emi

x + ex mi � ci : (5.7)

The spatial derivative is a summation of three weighted vectors, successively caused
by body reectance, shading-shadow and specular changes. From Eq. 5.6 it follows
that for matte surfacesthe shadow-shading direction is parallel to the RGB vector,
f jjcb. The specular direction follows from the assumption that the color of the light
sourceis known.

For matte surfaces(i.e. m i = 0), the projection of the spatial derivative on the
shadow-shading axis yields the shadow-shading variant containing all energy which
could beexplainedby changesdue to shadow and shading. Subtraction of the shadow-
shading variant Sx from the total derivative fx results in the shadow-shading quasi-
invariant:

Sx =
�

fx � f̂
�

f̂ =
�

emb
�

cb
x � f̂

�
+

�
ex mb + emb

x

� �
�cb

�
�
�

f̂

Sc
x = fx � Sx = emb

�
cb

x �
�

cb
x � f̂

�
f̂
� (5.8)
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which does not contain derivative energy causedby shadows and shading. The hat,
(̂:), denotesunit vectors. The full shadow-shading invariant results from normalizing
the quasi-invariant Sc

x by the intensity magnitude jf j

sx =
Sc

x

jf j
=

emb

emb jcbj

�
cb

x �
�
cb

x

�
� f̂

�
; (5.9)

which is invariant for mb.
For the construction of the shadow-shading-specular quasi-invariant, we intro-

duce the hue-direction which is perpendicular to the light sourcedirection ĉi and the
shadow-shading direction f̂ :

b̂ =
f̂ � ĉi

jf � ci j
: (5.10)

Projection of the derivative, fx , on the hue direction results in the shadow-shading-
specular quasi-invariant:

H c
x =

�
fx � b̂

�
b̂ = emb

�
cb

x � b̂
�

+
�
ex mb + emb

x

� �
cb � b

�
: (5.11)

The secondpart of this equation is zero if we assumethat shadow-shading changes
do not occur within a specularity, since then either

�
ex mb + emb

x

�
= 0 or

�
cb � b

�
=

(f � b) = 0. Subtraction of the quasi-invariant H c
x from the spatial derivative fx results

in the shadow-shading-specular variant H x :

H x = fx � H c
x : (5.12)

The full shadow-shading invariant is computed by dividing the quasi-invariant by
the saturation. The saturation is equal to the norm of the color-vector, f , after the
projection on the plane perpendicular to the light sourcedirection (which is equal to
subtraction of the part in the light sourcedirection)

hx =
H c

x

jf � (f � ĉi ) ĉi j
=

emb

emb jcb � (cb � ĉi ) ĉi j

�
cb

x � b̂
�

: (5.13)

The expressionhx is invariant for both m i and mb.
By projecting the local spatial derivative on three photometric axis in the RGB

cube we have derived the photometric quasi-invariants. Thesecan be combined with
the structure tensor of Eq. 5.18 for photometric quasi-invariant feature detection. As
discussedin section 5.2.1 we would like features to be independent of the accidental
choice of the color coordinate frame. As a consequencea rotation of the color co-
ordinates should result in the samerotation of the quasi-invariant derivatives. For
example, for the shadow-shading quasi-variant Sx this can be proven by

�
(Rf x )T R f̂

� �
R f̂

�
=

�
f T
x R T R f̂

� �
R f̂

�
= R

�
f T
x f̂

�
f̂ = RS x : (5.14)

Similar proofs hold for the other photometric variants and quasi-invariants. The
invariancewith respect to color coordinate transformation of the shadow-shading full
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invariants follow from the fact that jRf j = jf j. For the shadow-shading-specular full-
invariant, the invariance is proven by the fact that the inner product between two
vectors remains the same under rotations, and therefore

�
�Rf �

�
Rf � R ĉi � R ĉi �� =�

�R
�
f �

�
f � ĉi

�
ĉi

� �
� . Since the elements of the structure tensor are also invariant for

color coordinate transformations (seeEq 5.4) the combination of the quasi-invariants
and the structure tensor into a quasi-invariant structure tensor is also invariant for
color coordinate transformations.

5.3 Robust Full Photometric In variance

In section 5.2.3 the quasi- and full invariant derivatives are described. The quasi-
invariants outperform the full-in variants on discriminativ e power and are more robust
to noise (see chapter 3). However, the quasi-invariants are not suited for applica-
tions which require feature extraction. These applications compare the photometric
invariant values between various images and need full photometric invariance (see
Table 5.1). A disadvantage of full photometric invariants is that they are unstable in
certain areasof the RGB-cube. E.g. the invariants for shadow-shadingand speculari-
ties areunstablenear the gray axis. Theseinstabilities greatly reducethe applicabilit y
of the invariant derivativesfor which a small deviation of the original pixel color value
may result in a large deviation of the invariant derivative. In this section, we propose
a measurewhich describes the uncertainty of the photometric invariant derivatives,
thereby allowing for robust full photometric invariant feature detection.

We will �rst derive the uncertainty for the shadow-shading full invariant from its
relation to the quasi-invariant. We assumeadditiv e uncorrelated uniform Gaussian
noise. Due to the high-passnature of di�eren tiation we assumethe noiseof the zero
order signal (jf j) to be negligible comparedto the noiseon the �rst order signal (Sc

x ).
In section 5.2.3, the quasi-invariant has been derived by a linear projection of the
derivative fx on the plane perpendicular to the shadow-shading direction. Therefore,
uniform noise in fx will result in uniform noise in Sc

x . The noise in the full invariant
can be written as

~sx =
Sc

x + �
jf j

=
Sc

x

jf j
+

�
jf j

: (5.15)

The uncertainty of the measurement of ~sx dependson the magnitude of jf j. For small
jf j the error increasesproportionally . Thereforewe proposeto weight the full shadow-
shading invariant with the function w = jf j to robustify the color tensor-basedon the
chromatic invariant. For shadow-shading invariance examplesof the equations used
to compute the color tensor are given in Table 5.1.

For the shadow-shading-specular invariant, the weighting function should be pro-
portional with the saturation, since

~hx =
H c

x + �
jsj

=
H c

x

jsj
+

�
jsj

: (5.16)

This leads us to proposew = jsj as the weighting function of the hue derivative ~hx

seeFig. 5.2). On place where there is an edge, the saturation drops, and with the
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Table 5.1: Applicability of the di�er ent invariants for feature detection and extraction.

saturation the certainty of the hue measurement. The quasi-invariant (seeFig. 5.2d),
which is equal to the weighted hue, is more stable than the full invariant derivative
due to the incorporation of the certainty in the measurements. With the derived
weighting function we can compute the robust photometric invariant tensor (Eq. 5.3).

The uncertainties of the full-in variant by ways of error-propagation have alsobeen
investigated by Stokman and Gevers[19]. Our assumption of uniform noise in the
RGB channelstogether with the choiceof invariants basedon orthogonal color space
transformations leadsto a simpli�cation of the uncertainty measure. It also connects
with the intuitiv e notion that the uncertainty of the hue is dependedon the saturation
and the uncertainty of the chromaticit y (shadow-shadinginvariant) with the intensity.

5.4 Color Tensor-Based Features

In this section we show the generality of the proposedmethod by summing features
which can be derived from the color tensor. In section 5.2.3 and in section 5.3 we
described how to compute invariant derivatives. Dependent on the task at hand
we proposedto use either quasi-invariants for detection or robust full invariants for
extraction. The featuresin this chapter will be derived for gx . By replacing the inner

(a) (b) (c) (d)

Figure 5.2: (a) test image (b) hue derivative (c) saturation (d) quasi-invariant (see
also color plate C.10).
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product of gx by one of the following
(

fx � fx ; Sc
x � Sc

x ;
Sc

x � Sc
x

jf j2
; H c

x � H c
x ;

H c
x � H c

x

jsj2

)

: (5.17)

the acquired photometric invariant featuresare attained. In section5.4.1we describe
features derived from the eigenvalues of the tensor. In section 5.4.2 features which
are derived from an adapted version of the structure tensor and in section 5.4.3 we
describe color optical o w.

5.4.1 Eigen value-Based Features

Eigenvalue analysis of the tensor leadsto two eigenvalueswhich are de�ned by

� 1 = 1
2

�
gx �gx + gy �gy +

q
(gx �gx � gy �gy )2 + (2gx �gy )2

�

� 2 = 1
2

�
gx �gx + gy �gy �

q
(gx �gx � gy �gy )2 + (2gx �gy )2

�
:

(5.18)

The direction of � 1 indicates the prominent local orientation

� = 1
2 arctan

�
2gx �gy

gx �gx � gy �gy

�
: (5.19)

The � 's can be combined to give the following local descriptors:

� � 1 + � 2 describesthe total local derivative energy.

� � 1 is the derivative energy in the most prominent direction.

� � 1 � � 2 describesthe line-energy(see[62]). The derivative energyin the promi-
nent orientation is corrected for the energycontributed by the noise� 2.

� � 2 describes the amount of derivative energy perpendicular to the prominent
local orientation which is usedto select features for tracking [67].

An often applied feature detector is the Harris corner detector [27]. The color Harris
operator H can be written as a function of the eigenvaluesof the structure tensor

H f = gx �gx gy �gy � gx �gy
2 � k (gx �gx + gy �gy )2

= � 1� 2 � k (� 1 + � 2)2 :
(5.20)

5.4.2 Adaptations of the Color Tensor

The sameequations as DiZenzo's equations for orientation estimation are found by
Kass and Witkin [37]. They studied orientation estimation for oriented patterns
(e.g. �ngerprin t images). Oriented patterns are de�ned as patterns with a dominant
orientation everywhere. For oriented patterns other mathematics are neededthan
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for regular object images. The local structure of object images is described by a
step edge, whereas for oriented patterns the local structure is described as a set
of lines (roof edges). Lines generate opposing vectors on a small scale. Hence for
geometric operations on oriented patterns, methods are neededfor which opposing
vectors enforce one another. This is the sameproblem as encountered for all color
images,where the opposingvector problem doesnot only occur for oriented patterns,
but also for step edges,for which the opposingvectorsoccur in the di�eren t channels.
Hence similar equations were found in both �elds. Next to orientation estimation,
a number of other estimators were proposed by oriented pattern research [6], [24],
[79]. These operation are basedon adaptations of the structure tensor and can also
be applied to the color tensor.

The structure tensor of Eq. 5.2 can also be seen as a local projection of the
derivative energy on two perpendicular axes, namely u1 =

�
1 0

� T
and u2 =

�
0 1

� T
,

G u 1 ;u 2 =
�

(G x;y u1) � (G x;y u1) (G x;y u1) � (G x;y u2)
(G x;y u1) � (G x;y u2) (G x;y u2) � (G x;y u2)

�
(5.21)

in which G x;y =
�

gx gy
�

: From the Lie group of transformation several other
choices of perpendicular projections can be derived [6], [24]. They include feature
extraction for circle, spiral and star-like structures.

The star and circle detector is given as an example. It is based on u1 =
1p

x 2 + y2

�
x y

� T
which coincide with the derivative pattern of a circular patterns

and u2 = 1p
x 2 + y2

�
� y x

� T
which denotes the perpendicular vector �eld which

coincideswith the derivative pattern of starlike patterns. Thesevectors can be used
to compute the adapted structure tensor with Eq. 5.21. Only the elements on the
diagonal have non zero entries and are equal to

H =

 
x 2

x 2 + y2 gx �gx + 2xy
x 2 + y2 gx �gy + y2

x 2 + y2 gy �gy 0

0 x 2

x 2 + y2 gy �gy � 2xy
x 2 + y2 gx �gy + y2

x 2 + y2 gx �gx

!

; (5.22)

here � 1 describesthe amount of derivative energy contributing to circular structures
and � 2 the derivative energy which describes a starlike structure. Similar to the
proof given in Eq. 5.4 the elements of Eq. 5.22 can be proven to be invariant under
transformations of the RGB -space.

Curvature is another feature which can be derived from an adaption of the struc-
ture tensor, as discussedin chapter 4. The �t betweenthe local di�eren tial structure
and a parabolic model function can be written asa function of the curvature. Finding
the optimum of this function yields an estimation of the local curvature. For vector
data the equation for the curvature is given by

� =
w2gv �gv � w2 �gw �gw �

r �
w2 �gw �gw � w2gv �gv

� 2
+ 4w2 �wgv �gw

2

2w2 �wgv �gw
(5.23)
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in which gv and g� w are the derivatives in gaugecoordinates.

5.4.3 Color Optical Flo w

Optical o w can also be computed from the structure tensor. This is originally pro-
posedby Simoncelli [68] and has beenextended to color in [4], [21]. The vector of a
multi-channel point over time stays constant [31], [48]

dg
dt

= 0: (5.24)

Di�eren tiating yields the following set of equations

G x ;y v + gt = 0 (5.25)

with v the optical o w. To solve the singularity problem and to robustify the opti-
cal o w computation we follow Simoncelli [68] and assumea constant o w within a
Gaussianwindow. Solving Eq. 5.25 leadsto the following optical o w equation

v = (G x;y � G x;y ) � 1 G x;y � gt = M � 1b (5.26)

with

M =
�

gx �gx gx �gy

gy �gx gy �gy

�
(5.27)

and

b =
�

gx �gt

gy �gt

�
: (5.28)

The assumption of color optical o w based on RGB is that RGB pixel values
remain constant over time (see Eq. 5.24). A change of brightness intro duced due
to a shadow, or a light source with uctuating brightness such as the sun results
in non existent optical o w. This problem can be overcome by assuming constant
chromaticit y over time. For photometric invariant optical o w, full invariance is
necessarysince the optical o w estimation is basedupon comparing the (extracted)
edge response of multiple frames. Consequently photometric invariant optical o w
can be attained by replacing the inner product of gx by one of the following

(
Sc

x � Sc
x

jf j2
;

H c
x � H c

x

jsj2

)

: (5.29)

5.5 Exp erimen ts

The experiments test the features on the required criteria of our framework: 1. pho-
tometric invariance, 2. robustness. The third criterium, i.e. invariance with respect
to color coordinate transformations, we have already proven theoretically. In this
section we aim to demonstrate invariance by experiment and illustrate the generality
of the experiments by the variety of examples.For all experiments the derivativesare
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Table 5.2: Percentage of falsely detected points and percentage of wrongly classi�ed
points. Classi�cation is based on the extraction of invariant information. Uncorrelated
Gaussian noise is added with standard deviation 5 and 20.

computed with a Gaussianderivative of � = 1 and the color tensor scaleis computed
with � = 3, except when mentioned otherwise. The experiments are performed using
a Sony 3CCD color cameraXC-003P, Matrox Corona Frame-grabber, and two Osram
18 Watt \Lumilux deLuxe daylight" uorescent light sources.

5.5.1 Photometric In varian t Harris Poin t Detection

Robustnesswith respect to photometric changes,stabilit y of the invariants, and ro-
bustnessto noise, are tested. Further the abilit y of invariants to detect and extract

(a) (b) (c)

Figure 5.3: (a) An examplefrom Soil-47 image. (b) shadow-shadingdistortion with
the shadow-shadingquasi-invariant Harris points superimposed (c) specular distor-
tion and the shadow-shading-specular Harris points superimposed (see also color plate
C.11).



5.5. Exp erimen ts 61

featuresis examined,seealsoTable 5.1. The experiment is performedwith the photo-
metric invariant Harris corner detector (Eq. 5.20) and is executedon the Soil47multi
object set [42], which comprisesof 23 images,seeFig. 5.3a.

First, the feature detection accuracy of the invariants is tested. For each image
and invariant, the 20 most prominent Harris points are extracted. Next, Gaussian
uncorrelated noise is added to the data, and the Harris point detection is computed
10 times per image. The percentage of points which do not correspond to the Harris
points in the noiselesscaseare given in Table 5.2. The Harris point detector based
on the quasi-invariant outperforms the alternativ es. The instabilit y within the full
invariant can be partially repaired by the robust full invariant, however for detection
purposesthe quasi-invariants remain the best choice.

Next, the feature extraction for the invariants is tested. Again the 20 most promi-
nent Harris points are detected in the noise free image. For these points the pho-
tometric invariant derivative energy is extracted by

p
� 1 + � 2 � 2� n , where � n is an

estimation of the noisewhich contributes to the energyin both � 1 and � 2. To imitate
photometric variations of imageswe apply the following photometric distortion to the
images(compare with Eq. 5.5)

g (x) = � (x)f (x) + � (x)ci + � (x) ; (5.30)

where � (x) is a smooth function resembling variation similar to shading and shadow
e�ects, � (x) is a smooth function which imitates specular reections, and � (x) is
Gaussian noise. To test the shadow-shading extraction � (x) is chosen to vary be-
tween 0 and 1, and � (x) is 0. To test the shadow-shading-specular invariants � (x)
was chosenconstant at 0.7 and � (x) varied betweenzero and �ft y. After the photo-
metric distortion the derivative energy is extracted at the sametwenty points. The
extraction is consideredcorrect if the deviation of the derivative energy betweenthe
distorted and the noise-freecase is less then 10 percent. The results are given in
Table 5.2. Quasi-invariants which not suited for extraction have a hundred percent
error. The full invariants have better results but with worseningsignal-to-noiseratio
its performance drops drastically. In accordancewith the theory in section 5.3 the
robust full invariants successfullyimprove the performance.

5.5.2 Color Optical Flo w

Robustnessof the full photometric invariance features is tested on photometric in-
variant optical o w estimation. The optical o w is estimated on a synthetical image
sequencewith constant optical o w. We use the robust full photometric structure
tensor for the estimation of optical o w and compare it with 'classical' photometric
optical o w asproposedby [21]. Derivativesare computed with a Gaussianderivative
of � = 1 and the color tensor scaleis � = 5.

The shadow-shading photometric optical o w is tested on image with decreasing
intensity (seeFig. 5.4a ) which is shifted one pixel per frame. Uncorrelated Gaussian
noisewith � = 20 is addedto the sequence.In Fig. 5.4b,c the meanand the standard
deviation of the optical o w along the y-axis of Fig. 5.4a are depicted. Similarly
to the shadow-shading-specular invariant optical o w is tested on a sequencewith



62 Chapter 5. Robust Photometric In varian t Features from the Color Tensor

0

0.05

0.1

0.15

0.2

0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

achromaticity

intensity
m

ea
n

achromaticity

intensity

re
l. 

st
d.

 d
ev

.

m
ea

n

re
l. 

st
d.

 d
ev

.

(a) (b) (c)

(d) (e) (f )

Figure 5.4: (a),(d) frame from test sequence with constant optical ow of one pixel per
frame. (b),(c) mean and relative standard deviation mean of the optical ow based on
RGB (black line), shadow-shadinginvariant (blue line) and robust shadow-shading
invariant (red line). (e),(f ) mean and relative standard deviation of the optical ow
based on RGB (black line), shadow-shading-specular invariant (blue line) and robust
shadow-shading-specular invariant (red line) (see also color plate C.12).

increasing achromaticit y along the axes (see Fig. 5.4d,e,f.). The results show that
robust invariant methods (red lines) outperform the standard photometric optical o w
(blue lines). The gained robustnessbecomesapparent for the measurements around
the instable region. Which are the black area for the shadow-shading invariant and
the achromatic, grey area for the shadow-shading-specular invariant optical o w.

As an exampleof a real-world scene,multiple framesare taken from static objects
while the light sourceposition is changed. This results in a violation of the brightness

(a) (b) (c) (d)

Figure 5.5: (a) frame 1 of object scene with �lter size superimposed on it. (b) RGB
gradient optical ow (c) shadow-shadinginvariant optical ow and (d) robustshadow-
shading invariant optical ow (see also color plate C.13).
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(a) (b) (c) (d) (e)

Figure 5.6: (a) input image with Canny edgedetection based on successively(b) lumi-
nance derivative (c) RGB derivatives (d) the shadow-shadingquasi-invariant (e) the
shadow-shading-specular quasi-invariant (see also color plate C.14).

constraint by changing shading and moving shadows. Sinceboth the cameraand the
objects did not move the ground truth optical o w is zero. The violation of the bright-
nessconstraint disturbs the optical o w estimation basedon the RGB (Fig. 5.5b).
The shadow-shading invariant optical o w estimation is much lessdisturb ed by the
violation of the brightnessconstrain (Fig. 5.5c). However, the o w estimation is still
unstable around someof the edges.The robust shadow-shading invariant optical o w
has the best results and is only unstable in low-gradient area's (Fig. 5.5d).

5.5.3 Color Cann y Edge Detection

We illustrate the use of eigenvalue-basedfeatures by adapting the Canny edge de-
tection algorithm to allow for vectorial input data. The algorithm consists of the
following steps

1. Compute the spatial derivatives, fx , and combine them if desired into a quasi-
invariant (Eq. 5.8 or Eq. 5.11).

2. Compute the maximum eigenvalue (Eq. 5.18) and its orientation (Eq. 5.19).

3. Apply non-maximum suppressionon � 1 in the prominent direction.

In Fig. 5.6 the results of color Canny edgedetection for several photometric quasi-
invariants is shown. The results show that the luminance-basedCanny, Fig. 5.6b,
missesseveral edgeswhich are correctly found by the RGB -basedmethod , Fig. 5.6c.
Also the removal of spurious edgesby photometric invariance is demonstrated. In
Fig. 5.6d the edgedetection is robust to shadow and shadingchangesand only detects
material and specular edges.In Fig. 5.6eonly the material edgesare depicted.

5.5.4 Circular Ob ject Detection

The use of photometric invariant orientation and curvature estimation is demon-
strated on a circle detection example. Other than the previous experiments these
imageshave beenrecordedby the Nikon Coolpix 950, a commercial digital cameraof
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(a) (b) (c)

Figure 5.7: (a) detected circles based on luminance (b) detected circles based on
shadow-shading-specular quasi-invariant (c) detected circlesbased on shadow-shading-
specular quasi-invariant (see also color plate C.15).

averagequality. The imageshave size 267x200pixels with JPEG compression. The
digitization was done in 8 bits per color.

Circular object recognition is complicated due to shadow, shading and specular
events which inuence the feature extraction. We apply the following algorithm for
circle detection

1. Compute the spatial derivatives, fx , and combine them if desired into a quasi-
invariant (Eq. 5.8 or Eq. 5.11).

2. Compute the local orientation, Eq. 5.19, and curvature, Eq. 5.23.

3. Compute the hough space[3], H
�
R; x0; y0

�
, where R is the radius of the circle

and x0 and y0 indicate the center of the circle. The computation of the orien-
tation and curvature reducesthe number of votes per pixel to one. Namely, for
a pixel at position x =

�
x1; y1

�
,

R = 1
�

x0 = x1 + 1
� cos�

y0 = y1 + 1
� sin � :

(5.31)

Every pixel votes with its the derivative energy
p

fx � fx .

4. Compute the maxima in the hough space. These maxima indicate the circle
centers and the radii of the circle.

In Fig. 5.7 the results of the circle detection are given. The luminance-basedcircle
detection is corrupted by the photometric variation in the image. Nine circles had
to be detected before the �v e balls were detected. For the shadow-shading-specular
quasi-invariant basedmethod the �v e most prominent peaksin the hough spacecoin-
cide with reasonableestimatesof the radii and center points of the circles. Note that,
although the recordingsdo not ful�ll the assumptionson which the dichromatic model
is based,such as white light source,saturated pixels and linear cameraresponse,the
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(a) (b) (c)

Figure 5.8: (a) input image (b) the circularity coe�cient C (c) the detected circles
(see also color plate C.16).

invariants still improve performanceby partially suppressingsceneincidental events,
such as shadows and specularities. In Fig. 5.7 an outdoor example with a shadow
partially covering the objects is given.

5.5.5 Lo cal Color Symmetry Detector

The applicabilit y of the features derived from an adaptation of the structure tensor
(section5.4.2) is illustrated herefor a symmetry detector. Weapply the circle detector
to an imagecontaining Lego-blocks (Fig. 5.8). Becausewe know that the color within
the blocks remains the same, the circle detection is done on the shadow-shading-
specular variant, H x (Eq. 5.11). The shadow-shading-specular variant contains all the
derivative energyexcept for the energywhich can only be causedby a material edge.
With the shadow-shading-specular variant the circular energy � 1 and the starlike
energy � 2 are computed according to Eq. 5.22. Dividing the circular energy by the
total energyyields a descriptor of local circularit y (seeFig. 5.8b)

C =
� 1

� 1 + � 2
: (5.32)

The superimposedmaxima of C, Fig. 5.8c, give good estimation of the circle centers.

5.6 Conclusions

In this chapter we proposeda framework to combine tensor-basedfeatures and pho-
tometric invariance theory. The tensor basis of these features ensuresthat opposing
vectors in di�eren t channels do not cancel out, but instead that they reinforce each
other. To overcomethe instabilit y causedby transformation to an photometric full
invariant, we proposean uncertainty measureto accompany the full invariant. This
uncertainty measureis incorporated in the color tensor to generaterobust photomet-
ric invariant features. Experiments show that: 1) the color basedfeaturesoutperform
their luminance counterparts, 2) the quasi-invariants give stable detection, and 3)
that the robust invariants give better extraction results.
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Chapter 6

Bo osting Color Saliency in
Image Feature Detection

6.1 In tro duction

Indexing objects and object categoriesas an ordered collection of salient points has
been successfullyapplied to image matching, content-based retrieval, learning and
recognition [13], [47], [54], [63], [65], [85]. Salient points are local features in the im-
agewhich exhibit geometrical structure, such as T-junctions, corners,and symmetry
points. The aim of salient point detection is to represent objects more conciselyand
robust to varying viewing conditions, such as changesdue to zooming, rotation, and
illumination changes.Applications basedon salient points are generally composedof
three phases: 1. a feature detection phase locating the features. 2. an extraction
phase in which local descriptions are extracted at the detected locations and 3. a
matching phasein which the extracted descriptors are matched against a databaseof
descriptors. In this chapter, the focus is to improve the salient point detection phase.

Although the majorit y of image data is in color format nowadays, most salient
point detectors are still luminance based. They typically focus on shape saliency
rather than color saliency[44], [93]. They focuson corner points without distinguish-
ing low-salient black-and-white corners from high-salient red-green corners. Only
recently color information has beenincorporated in the detection phase. Montesinos
et al. [55] proposean extensionof the luminance Harris corner detector to color [27].
Heidemann[29] incorporatescolor into the generalizedsymmetry transform proposed
by Reisfeldet al. [60]. Both methods achieve a performancegain for near isoluminant
events. However, sincethe luminance axis remainsthe major axesof color variation in
the RGB-cube, results do not di�er greatly from luminance basedfeature detection.
Itti et al. [33] use color contrast as a clue for salience. Their method is basedon a
zero-ordersignal which is not easily extendable to di�eren tial-based features.

For the evaluation of salient point detectorsSchmid et al. [64] proposedtwo crite-
ria: 1. repeatability , salient point detection should be stable under the varying viewing

67
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conditions, such as geometrical changesand photometric changes.2. distinctiveness,
salient points should focus on events with a low probabilit y of occurrence. Most
salient point detectors are designedaccording to these criteria. They focus on two
dimensional structures, such as corners,which are stable and distinctiv e at the same
time. Although color is believed to play an important role in attributing saliency
[34], the explicit incorporation of color distinctiv enessinto the designof salient points
detectors has, to our knowledge,not beendone.

A remarkable phenomenonappears when studying the statistics of color image
derivatives. In histograms of color derivatives,points of equal frequencyform regular
structures. These color image derivatives play two roles in salient point detection.
Firstly , they are input to the saliency function, which based on local derivatives
probes for salient structures. Secondly, they are part of the extracted local features,
on which the distinctiv enessof the salient point detector is based. This double role,
together with the statistical �nding described above, leadsto the following question:
How can we exploit the regularity of the distinctiv enessof color image derivatives to
improve salient feature detection ?

In this chapter we aim to incorporate color distinctiv enessinto salient point de-
tection. The extensionshould be generaland hencebe easyto incorporate in existing
salient point detectors. For a color image, with values f = (R; G; B )T , salient points
are the maxima of the saliency map, which compares the derivative vectors in a
neighborhood �xed by scale� ,

s = H � (fx ; fy ) (6.1)

where H is the saliency function and the subscript indicates di�eren tiation with re-
spect to the parameter. This type of saliency maps include [6], [27], [29], [44], [76].
The impact of a derivative vector on the outcome of the local saliencedepends on
its vector norm, jfx j. Hence, vectors with equal norm have an equal impact on the
local saliency. Rather than deriving saliency from the vector norm, the challenge is
to adapt the saliency function in order that vectors with equal color distinctiv eness
have equal impact on the saliency function.

6.2 Color Distinctiv eness

The e�ciency of salient point detection dependson the distinctiv enessof the extracted
salient points. At the salient points' positions, local neighborhoods are extracted and
described by local imagedescriptors. The distinctiv enessof the descriptor de�nes the
concisenessof the representation and the discriminativ e power of the salient points.
The distinctiv enessof interest points is measuredby its information content [64].

For luminance-baseddescriptors, the information content is measuredby looking
at the distinctiv enessof the di�eren tial invariants described by the local 2-jet [40] at
the detectedpoints [63]. Montesinoset al. [55] arguethat due to the extra information
available in color imagesthe color 1-jet is su�cien t for local structure description. The
color 1-jet descriptor is given by

v =
�

R G B Rx Gx Bx Ry Gy By
� T

: (6.2)
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The information content of this color descriptor includes the information content of
more complex local color descriptors such as color di�eren tial invariant descriptors,
sincethesecomplex descriptors are computed from the elements of Eq. 6.2.

From information theory it is known that the information content of an event
is dependent on its frequency or probabilit y. Events which occur rarely are more
informativ e. The dependencyof information content on its probabilit y is given by

I (v ) = � log(p(v )) (6.3)

where p(v ) is the probabilit y of the descriptor v . The information content of the
descriptor, given by Eq. 6.2, is approximated by assumingindependent probabilities
of the zeroth order signal and the �rst order derivatives

p(v ) = p(f ) p(fx ) p(fy ) : (6.4)

To improve the information content of the salient point detector, de�ned by Eq. 6.1,
the probabilit y of the derivatives,p(fx ), should be small.

We can now restate the aim of this chapter in a more precisemanner. The aim is
to �nd a transformation g : < 3 ! < 3 for which holds that

p(fx ) = p
�

f
0

x

�
$ jg (fx )j =

�
�
�g

�
f

0

x

� �
�
� : (6.5)

This implies that vectors with equal information content have equal impact on the
saliency function. The transformation, attained by the function g, is called color
saliency boosting. Similar equationshold for p(fy ). Once a color boosting function g
has beenfound, the color boosted saliency can be computed with

s = H � (g (fx ) ; g (fy )) : (6.6)

The saliency map which used to derive saliency from the orientations and gradient
strength of the derivativesin a local neighborhood, is after color boosting basedon the
orientations and the information content of thesederivatives. Gradient strength has
beenreplacedby information content, thereby aiming for higher information content.

From Eq. 6.5 the color boosting function g is found by analyzing the probabilities
of the derivatives. The channelsof fx , f Rx ; Gx ; Bx g are correlated due to the physics
of the world. Photometric events in the world, such as shading, and reection of the
light sourcein specularities inuence RGB valuesin a well de�ned manner [66]. Before
investigating the statistics of color derivatives,the derivativesneedto be transformed
to a color spacewhich is uncorrelated with respect to thesephotometric events.

6.3 Physics-Based Decorrelation

Here we describe three color coordinate transformations which partition RGB -space
di�eren tly . The transformation are derived from photometric invariance theory [66].
Photometric invariance theory allows us to distinguish betweenvarious photometric
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causesfor featuresin the image,such asshadows, shading,specularities and object re-
ectance changes.The theory is basedon the dichromatic reection model intro duced
by Shafer [66]. Geusebroek et al. [16] extended the photometric reection theory to
di�eren tial-based operations. In chapter 3 we intro duced the quasi-invariant deriva-
tiv esto improve noisecharacteristics. Here we usethe samecolor transformations to
decorrelatethe spatial derivative, fx , into axeswhich are photometrically variant and
photometrically invariant.

6.3.1 Spherical Color Spaces

The spherical color transformation, seeFig. 6.1a, is given by:
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The spatial derivativesare transformed to the spherical coordinate system by:

S (fx ) = f s
x =

0

@
r sin ' � x
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p
R 2 + G2 + B 2

R x R + G x G+ B x Bp
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1

C
A : (6.8)

The scalefactors follow from the Jacobian of the transformation. They ensurethat
the norm of the derivative remains constant under transformation, hencejfx j = jf s

x j.
In the spherical coordinate systemthe derivative vector is a summation of a shadow-
shading variant part, Sx = (0; 0; r x )T and a shadow-shading quasi-invariant part,
given by Sc

x = (r sin '� x ; r ' x ; 0)T .

6.3.2 Opp onent Color Spaces

The opponent color space,seeFig. 6.1b, is given by:
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For this the following transformation of the derivatives follows:

O (fx ) = f o
x =

0

@
o1x
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3
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1

C
A : (6.10)

The opponent color spacedecorrelatesthe derivative with respect to specular changes.
The derivative is divided into a specularvariant part, O x = (0; 0; o3x )T , and a specular
quasi-invariant part Oc

x = (o1x ; o2x ; 0)T .
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Figure 6.1: The spherical, opponent and hue-saturation-intensity coordinate system.

6.3.3 Hue-Saturation-In tensit y Color Spaces

The well known hue-saturation-intensity is given by
0
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The transformation of the spatial derivatives into the hsi -space decorrelates the
derivative with respect to specular, shadow and shading variations,

H (fx ) = f h
x =

0

@
s hx

sx

i x

1

A =

0

B
B
@

(R (B x � G x )+ G(R x � B x )+ B (G x � R x ))p
2(R 2 + G2 + B 2 � R G� R B � GB )

R (2R x � G x � B x )+ G(2G x � R x � B x )+ B (2B x � R x � G x )p
6(R 2 + G2 + B 2 � R G� R B � GB )

(R x + G x + B x )p
3

1

C
C
A :

(6.12)
The shadow-shading-specular variant is given by H x = (0; 0; i x )T and the shadow-
shading-specular quasi-invariant by H c

x = (shx ; sx ; 0)T .
Sincethe length of a vector is not changedby coordinate transformations, the norm

of the derivative remainsthe samein all three representations jfx j = jf c
x j = jf o

x j =
�
�f h

x

�
� .

For both the opponent color spaceand the hue-saturation-intensity color space,the
photometrically variant direction is given by the L1 norm of the intensity. For the
spherical coordinate system the variant is equal to the L2 norm of the intensity.

We discussedthree color spaceswhich decorrelate the color spaceswith respect
to various physical events. In the decorrelated color spacesoften occurring physical
variations, such as intensity changes,will only inuence the photometric variant axes.
In the next section the statistics of color image derivatives are examined in these
decorrelatedcolor spaces.

6.4 Statistics of Color Images

As discussedin Section 6.2 the information content of a descriptor depends on the
probabilit y of the derivatives, seeEq. 6.3 and Eq. 6.4. In this section we investigate
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Figure 6.2: The histograms of the distribution of the transformed derivatives of the
Corel image database in respectively the (a) RGB coordinates, (b) the opponent co-
ordinates and (c) the spherical coordinates. The three planes correspond with the
isosalient surfaces which contain (fr om dark to light) respectively 90%, 99%, 99:9%t
of the total number of pixels (see also color plate C.17).

the statistics of color derivativesin the decorrelatedcolor spacesproposedin Section
6.3. From the statistics we aim to �nd a mathematical description of surfacesof equal
probabilit y, so called isosalient surfaces.Sincea description of thesesurfacesleadsto
the solution of Eq. 6.5.

The statistics of color imagesare shown for the Corel database[15], which consists
of 40,000imagesafter the exclusion of black and white images. In Fig. 6.2 the dis-
tributions of the �rst order derivatives, f x , are given for the various color coordinate
systemsdescribed in section6.3 (H SI has beenleft out due to spaceconsiderations).
The isosalient surfacesshow a remarkably simple structure, approximately similar to
an ellipsoid. For all three color spaces,the third coordinate coincideswith the axis
of maximum variation (i.e. the intensity). For the opponent and the spherical coor-
dinate system, the �rst and secondcoordinate are rotated, with rotation matrix R � ,
so that the �rst coordinate coincideswith the axis of minimum variation

�
r sin ~' ~� x ; r ~' x

� T
= R� (r sin '� x ; r ' x )T

(~o1x ; ~o2x )T = R� (o1x ; o2x )T :
(6.13)

The tilde indicates the color spacetransformation with the aligned axes. Similarly,
the aligned transformations are given by ~S (fx ) = f ~s

x and ~O (fx ) = f ~o
x .

After alignment of the axesisosalient surfacesof the derivative histograms can be
approximated by ellipsoids
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x

� 2
= R2 (6.14)

where hx = h (fx ) =
�
h1

x ; h2
x ; h3

x

� T
and h is one of the transformations ~S, ~O, or H .
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6.5 Bo osting Color Saliency

We now return to our goal, that is to incorporate color distinctiv enessinto salient
point detection. Or mathematically, to �nd the transformation for which vectors
with equal information content have equal impact on the saliency function. In the
previous section we saw that derivatives of equal saliency form an ellipsoid. Since
Eq. 6.14 is equal to

�
� h1

x

� 2
+

�
� h2

x

� 2
+

�
 h3

x

� 2
= j� h (fx )j2 (6.15)

the following holds

p(fx ) = p
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f
0

x

�
$ j� h (fx )j =

�
�
� � T h

�
f

0

x

� �
�
� ; (6.16)

where� is a 3x3 diagonalmatrix with � 11 = � , � 22 = � , and � 33 =  . � is restricted
to � 2

11+ � 2
22+ � 2

33 = 1. The desiredsaliencyboosting function (seeEq. 6.5) is obtained

g(fx ) = � h (fx ) : (6.17)

By a rotation of the color axesfollowed by a rescalingof the axis, the oriented isos-
alient ellipsoids are transformed into spheres,and thus vectors of equal saliency are
transformed into vectors of equal length.

6.5.1 Inuence of Color Saliency Bo osting on Rep eatabilit y

In the intro duction two criteria for salient point detection were described, namely
distinctiv enessand repeatabilit y. The color boosting algorithm is designedto focus
on color distinctiv eness,while adopting the geometricalcharacteristics of the operator
to which it is applied. In this section we examine the inuence of color boosting on
the repeatabilit y. We identify two phenomenawhich inuence the repeatabilit y of
g (fx ). Firstly , by boosting the color saliencyan anisotropic transformation is carried
out. This will reduce the signal-to-noiseratio negatively. Secondly, by boosting the
photometric invariant directions more than the photometric variant directions, we
improve robustnesswith respect to sceneaccidental changes.

For isotropic uncorrelated noise, " , the measuredderivative f̂x can be written as

f̂x = fx + " (6.18)

and after color saliency boosting

g
�

f̂x

�
= g(fx ) + � ": (6.19)

Note that isotropic noiseremains unchangedunder the orthogonal curvilinear trans-
formations. Assume the worst casein which fx only has signal in the photometric
variant direction, then the noisecan be written as

jg (fx )j
j� " j

�
� 33 jfx j
� 11 j" j

: (6.20)
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fx jfx j1 f ~s
x

~Sc
x f ~o

x
~Oc

x f h
x H c

x

� 11 0.577 1 0.851 0.856 0.850 0.851 0.858 1

� 22 0.577 - 0.515 0.518 0.524 0.525 0.509 0

� 33 0.577 - 0.099 0 0.065 0 0.066 0

Table 6.1: The diagonal entries of � for the Corel data set computed for Gaussian
derivatives with � = 1.

Hence, the signal-to-noise ratio reducesby � 11
� 33

, which will negatively inuence re-
peatabilit y to geometrical and photometrical changes.

The secondphenomenawhich inuences repeatabilit y is the gain in photometric
robustness.By boosting color saliencythe inuence of the photometric variant direc-
tion diminishes while the inuence of the quasi-invariant directions increases. As a
consequencethe repeatabilit y under photometric changes,such as changing illumina-
tion and viewpoint, increases.

Depending on the task at hand, distinctiv enessmay be lessdesired than signal-
to-noise. For this purpose the � parameter is proposed, which allows for choosing
between best signal-to-noise characteristics, � = 0, and best information content,
� = 1:

g� (fx ) = � � h (fx ) + (1 � � ) h (fx ) : (6.21)

For � = 0 this is equal to color gradient-based salient point detection.

6.6 Exp erimen ts and Illustrations

Color saliency boosting is tested on: information content and repeatabilit y. The
salient points based on color saliency boosting are compared to luminance, RGB
gradient, and the quasi-invariant-based salient point detectors. The generality of the
approach is illustrated by applying color boosting to several existing feature detectors.

6.6.1 Initialization

Experiments areperformedon a subsetof 1000randomly chosenimagesfrom the Corel
data set. Before color saliency boosting can be applied, the �-parameters (Eq.6.15)
have to be initialized by �tting ellipses to the histogram of the data set. First the
axesof the opponent and the spherical transformation are aligned by Eq. 6.13. Next,
the axesof the ellipsoid are derived by �tting the isosaliencysurfacewhich contains
99 percent of the pixels of the histogram of the Corel data set. The results for the
various transformations are summarized in Table 6.1. The relation betweenthe axes
in the various color spacesclearly con�rms the dominance of the luminance axis in
the RGB -cube, since � 33, the multiplication-factor of the luminance axis, is much
smaller than the color-axesmultiplication factors, � 11 and � 22.

To give an idea on how the �-parameters changewhen changing the data set, we
alsoestimated the � parametersfor two other data sets,the Soil data [42] and a table-
tennis sequence(seeFig. 6.3a,c). For the Soil data and the opponent color model the
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(c) (d)

(a) (b)

Figure 6.3: (a) Example Soil data set and (c) frame from table-tennis sequence. (b)
and (d) resultsof Harris detector (red dots) and the Harris detector with color boosting
(yellow dots). The red dots mainly coincide with black and white events, while the
yellow dots are focussed on colorful points (see also color plate C.18).

�-parameters are � 11 = 0:542, � 22 = 0:780, and � 33 = 0:313. Since this set consists
of colorful objects the luminance axis is lesssuppressedthan for the Corel set. For the
tennis sequencethe di�erence with Corel is smaller, � 11 = 0:588, � 22 = 0:799, and
� 33 = 0:124. A change in �-parameters can have various causessuch as the quality
of the camera, the applied compressionand the di�eren t content of the data.

We have chosenthe Harris point detector [27] to test color boosting in experiment
B, C, and D. It is computed with

H � (fx ; fy ) = fx � fx fy � fy � fx � fy
2

� k
�
fx � fx + fy � fy

� 2
(6.22)

by substituting fx and fy by g(fx ) and g(fy ). The bar �: indicates convolution with
a Gaussian �lter and the dot indicates the inner product. We applied Gaussian
derivativesof � = 1 and Gaussiansmoothing with � = 3.

6.6.2 Color Distinctiv eness

Here we examine if color boosting improves the color distinctiv enessof the Harris
detector. In [64], the Harris detector has already been shown to outperform other
detectors both on 'shape' distinctiv enessand repeatabilit y. The color distinctiv eness
of salient point detectors is described by the information content of the descriptors
extracted at the locations of the salient points. From the combination of Eq. 6.3 and
Eq. 6.4, it follows that the total information is computed by summing the information
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standard descriptor normalized descriptor

20 points 100 points 20 points 100 points

method inf. incr(%) decr(%) inf. incr. decr. inf. incr. decr. inf. incr. decr.

fx 20.4 - - 20.0 - - 13.2 - - 13.9 - -

jfx j1 19.9 0 1.4 19.8 0 0.8 13.0 0 2.7 13.8 0 1.0

~Sc
x 22.2 45.5 10.1 20.4 9.1 17.7 17.9 92.9 0.9 16.2 69.8 2.8

f ~s
x 22.3 49.4 .6 20.8 13.1 1.3 16.9 86.9 0.6 15.5 57.6 .7

~Oc
x 22.6 51.4 12.9 20.5 12.0 34.2 18.9 92.5 1.3 16.5 64.6 10.8

f ~o
x 23.2 62.6 0.0 21.4 21.5 0.9 18.4 88.2 0.3 16.4 65.0 1.7

H c
x 21.0 21.7 43.4 19.0 1.8 77.4 17.3 77.1 10.9 14.8 31.7 37.9

f h
x 23.0 57.2 0.3 21.3 16.7 1.1 18.3 87.4 0.5 16.2 62.3 2.2

rand. 14.4 0 99.8 14.4 0 100 10.1 2.7 89.1 10.2 .6 96.7

Table 6.2: The information content of salient point detectors. Measured in 1. in-
formation content and 2. the percentage of images for which a substantial decrease
(� 5%) or increase(+5%) of the information content occurs. The experiment is per-
formed with both 20 or 100 salient points per image. The experiment is repeated with
a normalized descriptor which is invariant for luminance changes.

of the zeroth and �rst order part, I (v ) = I (f )+ I (fx )+ I (fy ). The information content
of the parts is computed from normalized histograms with

I (f ) = �
X

i

pi log (pi ) (6.23)

where pi are the probabilities of the bins of the histogram of f .
The results for 20 and 100salient points per imageare shown in Table 6.2. Next to

the absolute information content we have alsocomputed the relative information gain
with respect to the information content of the color gradient basedHarris detector.
For this purposethe information content on a single image is de�ned as

I = �
nX

j =1

log (p(vj )) (6.24)

where j = 1; 2; :::n and n is the number of salient points in the image. Here p(vj )
is computed from the global histograms, which allows comparison of the results per
image. The information content change is consideredsubstantially for a 5 percent
increaseor decrease.

The highest information content is obtained with f ~o
x , which is the color saliency

boosted version of the opponent derivatives. The boosting results in an increaseof
7% to 13%of the information content comparedto the color gradient baseddetector.
On the imagesof the Corel set this resulted in a substantial increaseon 22% to 63%
of the images. The advantage of color boosting diminishes when increasingthe num-
ber of salient points per image. This is causedby the limited number of color clues
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(a) (b) (c) (d)

Figure 6.4: (a) and (c) Corel input images. (b) and (d) resultsof Harris detector (red
dots) and the Harris detector with color boosting (yellow dots). The red dots mainly
coincide with black and white events, while the yellow dots are focussed on colorful
points (see also color plate C.19).

in many of the images,which is especially visible for the results of the photometric
quasi-invariants, ~Sc

x , ~Oc
x , or H c

x . These detectors discard all intensity information,
which in the caseof 100 salient points per image results in many imageswith a sub-
stantial decreasein information content. Finally, it is noteworthy to seehow small
the di�erence is between luminance and RGB -basedHarris detection. Since the in-
tensity direction alsodominates the RGB derivatives,using RGB -gradient instead of
luminance-basedHarris detection only results in a substantial increasein information
content in 1% of the images.

It might be desirablefor the descriptor to be invariant for sceneincidental events
likeshadingand shadows[63]. In thesecasesthe information content of the normalized
descriptor, which is invariant to luminance changes,better reects the information
content of the salient point detector

v =
�

R
jf j

;
G
jf j

;
B
jf j

;
Rx

jfx j
;

Gx

jfx j
;

Bx

jfx j
;

Ry

jfy j
;

Gy

jfy j
;

By

jfy j

�
: (6.25)

The results of the normalized descriptor are given in the right half of Table 6.2. The
increasein information content of the quasi-invariants and the color boosteddetectors
stands out even more, with substantial gains in information content of up to 90%.
Here the quasi-invariants baseddetectors outperform the other detectors.

In Fig. 6.4 resultsof the RGB -gradient basedand color boostedHarris detector are
depicted. From a color information point of view, the RGB -gradient basedmethod
doesa poor job. Most of the salient points have a black and white local neighborhood,
with a low color saliency. The salient points after color boosting focus on more
distinctiv e points. Similar results are depicted in Fig. 6.3b,d, where the results are
shown computed with the �-parameters belonging to the data setsof theseimages.

6.6.3 Rep eatabilit y: signal-to-noise

Repeatabilit y measuresthe stabilit y with respect to varying viewing conditions. As
indicated in section 6.5.1 color saliency boosting reduces the signal-to-noise ratio.
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Repeatabilit y with respect to geometricalchanges,scaling,and a�ne transformations
are considereda property of the detector and will not be consideredhere.

The lossof repeatabilit y causedby color saliencyboosting is examinedby adding
uniform, uncorrelated Gaussian noise of � = 10. This yields a good indication of
loss in signal-to-noise,which in its turn will inuence results of repeatabilit y under
other variations, such as zooming, illumination changes, and geometrical changes.
Repeatabilit y is measuredby comparing the Harris points detectedin the noisy image
to the points in the noise-freeimages. The results in Fig. 6.5a correspond to the
expectation madeby Eq. 6.20,namely the larger the di�erence between� 11 and � 33,
the poorer the repeatabilit y.

In Fig. 6.5b the information content and repeatabilit y as a function of the color
boosting, determined by the � -parameter, is given (see Eq.6.21). The experiment
is performed by applying color boosting to the opponent color space. The results
show that information content increasesat the cost of stabilit y. Depending on the
application a choice should be made about the amount of color saliency boosting.

6.6.4 Rep eatabilit y: photometric variation

Photometric robustnessincreaseswith color boosting, as discussedin Section 6.5.1.
In Fig. 6.6 the dependanceof repeatabilit y is tested on two image sequenceswith
changing illumination conditions [53]. The experiment was performed by applying
color boosting to the spherical color space,sincechangesdue to shadow-shading will
be along the photometric variant direction of the spherical system. For these ex-
periments two intertwining phenomenacan be observed: the improved photometric
invariance and the deterioration of signal-to-noise ratio with increasing � . For the
nuts-sequence,with very prominent shadows and shading, the photometric invariance
is dominant, while for the fruit-basket the gained photometric invariance only im-
proves performanceslightly for medium � values. For total color saliency boosting,
� = 1 the lossof repeatabilit y, due to lossof signal-to-noise,is substantial.

(a) (b)

Figure 6.5: (a) The percentageof Harris points which remain detected after adding
Gaussianuncorrelated noise. (b) The information content (blue line) and the repeata-
bility (red line) as a function of the amount of color saliency boosting.
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a

(a) (b) (c)

Figure 6.6: (a),(b) Two frames from two sequences with changing il lumination con-
ditions. (c) Repeatability as a function of the amount of color saliency boosting for
the two sequences. Dotted line for the nuts-sequence and the continuous line for the
fruit-basket sequence (see also color plate C.20).

6.6.5 Illustrations Generalit y

Color saliency boosting can be applied on all functions which can be written as a
function of the local derivatives. Here we apply it to three di�eren t feature detectors.
First we apply saliency boosting to the focus point detector which was originally
proposedby Reisfeld et al. [60] and recently extended to color by Heidemann [29].
The detector focuseson the center of locally symmetric structures. Fig. 6.7b shows
the saliency map as proposedin [29]. In Fig. 6.7c the result after saliency boosting
is depicted. Although focus point detection is already an extension from luminance
to color, black-and-white transition still dominate the result. Only after boosting
the color saliency, the less interesting black-and-white structures in the image are
ignoredand most of the red Chinesesignsare found. Similar di�erence in performance
is obtained by applying color boosting to the linear symmetry detector proposed
by Big•un [6]. This detector focuseson corner and junction like structures. The
RGB gradient based method focusesmainly on black-and-white events while the
more salient signboards are found only after color saliency boosting.

As a �nal illustration we illustrate that color saliency boosting can easily be ap-
plied to gradient basedmethods. In third row of Fig. 6.7 color boosting is applied
to a gradient basedsegmentation algorithm proposedby Jermyn and Ishikawa [36].
The algorithm �nds globally optimal regions and boundaries. In Fig. 6.7b and c re-
spectively the RGB gradient and the color boosted gradient are depicted. While the
RGB -gradient basedsegmentation is distracted by the many black-and-white events
in the background, the color boosted segmentation �nds the salient tra�c signs.

6.7 Conclusions

In this chapter color distinctiv enessis explicitly incorporated in the designof salient
point detectors. The method, called color saliencyboosting, can be incorporated into
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(d) (h) (l)

(c) (g) (k)

(b) (f ) (j)

(a) (e) (i)

Figure 6.7: Respectively, input image, RGB -gradient based saliencymap, color boosted
saliencymap and the resultswith red dots (lines) for gradient-based method and yellow
dots (lines) for salient points after color saliency boosting. Results (a),(b),(c),(d) for
the focuspoints, (e),(f ),(g),(h) for the symmetry points and (i),(j),(k),(l) for the global
optimal regions and boundary method (see also color plate C.21).

existing detectors which are mostly focusedon shape distinctiv eness.Saliencyboost-
ing is basedupon an analysis of the statistics of color image derivatives. Isosalient
derivatives form ellipsoids in the color derivative histograms. This fact is exploited
to adapt derivatives in such a way that equal saliency implies equal impact on the
saliency map. Experiments show that color saliency boosting substantially increases
the information content of the detected points. A substantial information content
increaseis obtained on up to 20 � 60% of the Corel images. Further, the generality
of the method is illustrated by applying color boosting to various point detectors.



Chapter 7

Summary and Conclusions

7.1 Summary

In this thesis, we explore methods to exploit the extra information available in color
imagesas opposedto grey-value images. We indicate two main advantages of using
color data over luminance data. Firstly , color data contains a richer photometric
description of the local structure from which various causesfor variations in the image
can be distinguished. This richer description allows for example to separatehighly
informativ e object edgesfrom less informativ e shadow edges. A secondadvantage
of color over luminance is that color can be used to improve the distinctiv enessof
salient point detectors. An analysis of the distribution of colors in the world allows
to distinguish betweenlow frequent and therefore highly informativ e colors, and high
frequent and therefore lessinformativ e colors. The observation of color distinctiv eness
can be incorporated in existing salient point detectors. The two above mentioned
advantages let to the following main objectives for this thesis:

1. From Luminance to Color: Extend luminance-basedalgorithms to color in
a mathematically soundway. One consequenceis that color imageenhancement
methods do not intro duce new chromaticities. A secondimplication is that for
di�eren tial-based algorithms the derivativesof the separatechannelsshould be
combined without lossof derivative information.

2. Photometric Information: Compute photometric invariant di�eren tial in-
formation in a robust way. We focus on the class of applications for which
no a-priori knowledge of the noise characteristics of the acquisition system is
available.

3. Color Distinctiv eness: Improve the distinctiv enessof salient point detection
algorithms by explicitly incorporating color statistics into the detector design.

The results obtained in the thesis are discussedper chapter in the following para-
graphs:

81
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Chapter 2: Least Squares and Robust Estimation of Lo cal Image Struc-
ture. In this chapter we propose the Gaussian facet model, as a generalization of
the classicHaralick facet model, which constructs a polynomial approximation of the
unsmoothed image. The measured di�eren tial structure therefore is closer to the
`real' structure than the di�eren tial structure measuredusing Gaussianderivatives.
At the points in an image where the di�eren tial structure changesabruptly (because
of discontinuities in the imaging conditions, e.g. a material change, or a depth dis-
continuit y) both the Gaussianderivatives and the Gaussian facet model di�use the
information from both sidesof the discontinuit y (smoothing acrossthe edge). Robust
estimators that are classicallymeant to deal with statistical outliers can also be used
to deal with these`mixed model distributions'. In this paper we intro duce the robust
estimators of local imagestructure. We start with the Gaussianfacet model wherewe
replacethe quadratic error norm with a robust (Gaussian)error norm, which leadsto
a robust Gaussianfacet model. Examples are given for luminance and color images,
and for both zero and higher order di�eren tial structure.
Chapter 3: Edge and Corner Detection by Photometric Quasi-In varian ts.
We proposea new classof derivatives which we refer to as quasi-invariants. These
quasi-invariants are derivativeswhich sharewith full photometric invariants the prop-
erty that they are insensitive for certain photometric edges,such asshadows or specu-
lar edges,but without the inherent instabilities of full photometric invariants. Exper-
iments show that the quasi-invariant derivativesare lesssensitive to noiseand intro-
ducelessedgedisplacement than full invariant derivatives. Moreover, quasi-invariants
signi�cantly outperform the full invariant derivativesin terms of discriminativ epower.
Chapter 4: Curv ature Estimation in Orien ted Patterns Using Curvilinear
Mo dels. Curved oriented patterns are dominated by high frequenciesand exhibit
zero gradients on ridges and valleys. Existing curvature estimators fail here. The
characterization of curved oriented patterns basedon translation invariance lacks an
estimation of local curvature and yields a biasedcurvature-dependent con�dence mea-
sure. In chapter 4, we useparameterizedcurvilinear models to measurethe amount
of local gradient energy along the model gradient as a function of model curvature.
Minimizing the residual energy yields a closed-form solution for the local curvature
estimate and the corresponding con�dence measure.We show that simple curvilinear
models are applicable in the analysis of a wide variety of curved oriented patterns.
Chapter 5: Robust Photometric In varian t Features from the Color Tensor.
In this chapter we focus on the structure tensor, or color tensor, which adequately
handlesthe vector nature of color images. Further, we combine the featuresbasedon
the color tensor with photometric invariant derivatives to arrive at photometric in-
variant features. We circumvent the drawback of unstable photometric invariants by
deriving an uncertainty measureto accompany the photometric invariant derivatives.
The uncertainty is incorporated in the color tensor, hereby allowing the computa-
tion of robust photometric invariant features. The combination of the photometric
invariance theory and tensor-basedfeatures allows for detection of a variety of fea-
tures such as photometric invariant edges,corners, optical o w and curvature. The
proposedfeatures are tested for noise characteristics and robustnessto photometric
changes.Experiments show that the proposedfeaturesare robust to sceneincidental
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events and that the proposeduncertainty measureimproves the applicabilit y of full
invariants.
Chapter 6: Bo osting Color Saliency in Image Feature Detection. In this
chapter color distinctiv enessis explicitly incorporated into the designof saliency de-
tection. The algorithm, called color saliency boosting, is basedon an analysis of the
statistics of color image derivatives. Isosalient color derivatives are shown to form
ellipsoidal surfaces. Based on this remarkable statistical �nding, isosalient deriva-
tiv es are transformed by color boosting to have equal impact on the saliency. Color
saliencyboosting is designedasa genericmethod easily adaptable to existing, mostly
shape distinctiv enessfocussed,feature detectors. Results show that substantial im-
provements in information content are acquired by targeting color salient features.
Further, the generality of the method is illustrated by applying color boosting to
multiple existing saliency methods.

7.2 Conclusions

In this thesis we have proposedtheory and techniques to augment the usefulnessof
color for computer vision. The �rst objective of the thesis is to extend luminance-
based algorithms to color in a mathematical sound way. For color image �ltering
this implies that the correlation between the channels has to be taken into account
to prevent the intro duction of undesired new chromaticities. To this end, a robust
estimator of local imagestructure is proposed.The estimation is basedon the iterativ e
useof a spatial-tonal Gaussian�lter which is basedon both the spatial distance and
the tonal distancebetweenpixel values. Application of the robust estimator results in
e�cien t noisereduction with only little lossof contrast, and without the intro duction
of new chromaticities. For di�eren tial-based algorithms the extensionfrom luminance
to color posesa di�eren t problem. The problem is how to combine the di�eren tial
information of the separatechannels. We observe that tensor mathematics solvesthis
problem. Therefore we give an overview of tensor-basedfeaturesand we show how to
extend them to color.

The secondobjective of the thesis is to design robust photometric invariant dif-
ferential operators. We distinguish betweenfeature detection, i.e. the localization of
a feature, and feature extraction, i.e. the extraction of a descriptor of a local neigh-
borhood at a certain location in the image. Firstly , for feature detection, a set of
derivative �lters is proposedwhich are coined quasi-invariants. These �lters outper-
form existing full photometric invariant derivatives in terms of discriminativ e power
and localization. Secondly, for feature extraction, we derive an uncertainty measure
to accompany full-in variant derivatives. Color featureswhich incorporate this uncer-
tainty measureare shown to outperform existing full invariant features. The proposed
color features include: edges,corners, symmetry points, circle detectors, and optical
o w.

The third objective of the thesis is to improve the distinctiv enessof salient point
detection algorithms by explicitly incorporating color statistics into the detector de-
sign. From information theory it is known that rare events, i.e. events with a low



84 Chapter 7. Summary and Conclusions

frequencyof occurrence,have high information content. Salient point detection aims
at detecting salient, and hencehighly informativ e points in the image. Most existing
salient point detectors are luminance-basedand are computed from the di�eren tial
structure of the image. An analysisof the statistics of color derivativesfor a largedata
set of real world pictures reveals a remarkable phenomenon;derivatives with equal
frequency, and henceequal information content, form ellipsoid surfacesin derivative
space. We exploit this phenomenonby adjusting the saliency functions in such a
way that points with equal information content have equal inuence on the saliency
function. This processis called color saliency boosting, and it has been proven to
substantially increasethe information content of the detected salient points.
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Samenvatting

Vandaagde dag maakt het merendeelvan de beeldberwerkings operaties slechts ge-
bruik van de luminantie (de grijswaarden) en wordt de kleureninformatie onbenut
gelaten, ondanks het feit dat een aanzienlijk deel van beelddata tegenwoordig in
kleurenformaat is. Dit proefschrift behandelt technieken en theorie•en om de mo-
gelijkheden, die kleurenbeeldberwerking en in het bijzonder kleurenkenmerkdetectie
bieden, verder te benutten.

Voor het gebruik van kleurenbeeldenis het belangrijk om na te gaanhoebestaande
operaties, ontwikkeld voor luminantiebeelden,op een wiskundig correcte wijze naar
kleurenbeeldenkunnen worden uitgebreid. Voor beeldverfraaiing betekent dit dat de
correlatie tussen de kanalen (rode, groene en blauwe kanaal) zodanig moet worden
gerespecteerd dat de operaties geen kleuren intro duceren die niet aanwezig zijn in
het originele beeld. In dit proefschrift wordt dit probleem omgeschreven naar een
robuust schattingsprobleem, en wordt een e�ci •ente methode voorgesteld om lokale
beeldstructuur te schatten. Beeldverfraaiing gebaseerdop deze methode laat een
goede ruisonderdrukking zien, gecombineerd met behoud van contrast en zonder de
intro ductie van ongewenstenieuwe kleuren.

Voor operaties die gebaseerdzijn op de di�eren ti •ele structuur van een beeld
veroorzaakt de uitbreiding naar kleuren een ander wiskundig probleem: hoe moet
de di�eren ti •ele structuur van de verschillende kanalen worden gecombineerd ? Er
wordt aangetoond dat tensor wiskunde dit probleem oplost, waarna een overzicht
wordt gegeven van bestaandetensor gebaseerdeoperaties, samenmet de uitbreiding
voor kleurenbeelden.

Verder concentreert dit proefschrift zich op tweevoordelen van kleurenbeeldbew-
erking ten opzichte van traditionele luminantie gebaseerdebeeldbewerking.

Ten eerste,kleurenbeeldenbevatten eenrijk ere fotometrische beschrijving van de
beeldinhoud. Hierdoor wordt het mogelijk om fotometrisch invariante kenmerkdetec-
tie in beeldente doen. Beeld operaties kunnen zo worden ontworpen dat belangrijke
overgangen tussen objecten wel worden gedetecteerdterwijl relatief onbelangrijke
schaduw randen worden genegeerd. Hoewel fotometrische invariantie algemeenge-
bruikt wordt, is er slechts weinig onderzoek gedaannaar uitbreiding van fotometrische
invariantie theorie naar de di�eren ti •ele structuur van beelden. In dit proefschrift
stellen wij een groep afgeleidde �lters voor, genaamd de quasi-invarianten, die het
mogelijk maakt om de fotometrische invariante di�eren tiaal structuur van beelden
op eenrobuuste manier te meten. Experimenten tonen aan dat de quasi-invarianten
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betereresultaten behalendan de bestaandemethodeswat betreft discriminerend ver-
mogenen lokalisatie van de beeldkenmerken.

Een tweedevoordeel van kleurenbeeldbewerking is dat kleur eenbelangrijke aan-
wijzing is voor saillante (in het oog springende) beeldpunten. Bestaande saillante
beeldpuntoperatieszijn gebaseerdop de di�eren ti •elestructuur van beelden,en maken
geen gebruik van kleuren informatie. De saillantie van een beeldpunt wordt onder
andere bepaald door zijn zeldzaamheid, omdat zeldzame beeldpunten meer infor-
matie bevatten dan veel voorkomendebeeldpunten. In dit proefschrift analyserenwe
de kansverdeling van kleurenafgeleidenvoor een grote dataset van 40.000 beelden,
en komen tot de observatie dat dezeverdeling goed benaderd kan worden door een
ellipso•�de. Dezeopmerkelijke observatie wordt gebruikt om saillante beeldpuntdetec-
tie te optimaliseren. Experimenten laten zien dat de hiervoor aangepastemethodes
beeldpunten detecterenmet hogereinformatie dichtheid.
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Color Plates

(a) (b) (c) (d) (e)

Figure C.1: Chapter 1: (a) Exampleimageand (b) linear smoothed version of example
image. (c) Red channel, (d) green channel and (e) blue channel of exampleimage.

(a) (b) (c)

Figure C.2: Chapter 1: (a) Example image, (b) human scene segmentation and (c)
standard computer edgedetection.
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(a) (b)

Figure C.3: Chapter 1: (a) Example image, and (b) resultsof a standard salient point
detector.

Figure C.4: Chapter 2: Robust Estimation of Local Structure in Color Images. On
the �rst row from left to right: the `Lena' image with some noise added to it, the
zero-order facet model based robust estimator of the valuesand the robust estimator
based on a �rst order based facet model. On the second row we showa detail from the
image above.
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(a) (b) (c) (d) (e) (f )

Figure C.5: Chapter 3: (a) Red-blueedge,with a decreasing intensity of the bluepatch
going in the upward direction. Response of (b) normalized RGB derivative, and (c)
shadow-shadingquasi-invariant (Sc

x ). (d) Red-blue edge, with decreasing saturation
going in the upward direction. Responseof (e) hue derivative (hx ), and (f ) specular-
shadow-shadingquasi-invariant (H c

x ).

(a)

(b)

(c)

(d)

Figure C.6: Chapter 3: (a) Input image with superimposed two dotted lines which
are plotted in the images(c) and (d). (b) Edgeclassi�cation result, with white object
edges,blackshadowedgesand light grey specular edges. (c),(d) The derivative strength
along lines indicated in (a).
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(a) (b) (c) (d)

Figure C.7: Chapter 3: (a) Input image and corner detector results based on (b)
RGB gradient (fx ), (c) shadow-shadingquasi-invariant (Sc

x ), and (d) shadow-shading-
specular quasi-invariant (H c

x ).

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure C.8: Chapter 3: (a), (e) Input images. Corner detection based on (b)
RGB gradient (fx ), (c) normalized RGB , (d) shadow-shadingquasi-invariant (Sc

x ),
(f ) RGB gradient (fx ), (g) hue ful l invariant (hx ), and (h) shadow-shadingquasi-
invariant (H c

x ).
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Figure C.9: Chapter 5: (a) The subspace of measured light in the Hilbert space of
possible spectra. (b) The RGB coordinate system and an alternative orthonormal
color coordinate systemwhich spans the samesubspace.

(a) (b) (c) (d)

Figure C.10: Chapter 5: (a) test image (b) hue derivative (c) saturation (d) quasi-
invariant.

(a) (b) (c)

Figure C.11: Chapter 5: (a) An example from Soil-47 image. (b) shadow-shading
distortion with the shadow-shadingquasi-invariant Harris points superimposed (c)
specular distortion and the shadow-shading-specular Harris points superimposed.
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(a) (b) (c)

(d) (e) (f )

Figure C.12: Chapter 5: (a),(d) frame from test sequence with constant optical ow of
one pixel per frame. (b),(c) mean and relative standard deviation mean of the optical
ow based on RGB (black line), shadow-shadinginvariant (blue line) and robust
shadow-shadinginvariant (red line). (e),(f ) mean and relative standard deviation of
the optical ow based on RGB (black line), shadow-shading-specular invariant (blue
line) and robust shadow-shading-specular invariant (red line).

(a) (b) (c) (d)

Figure C.13: Chapter 5: (a) frame 1 of object scene with �lter size superimposed on
it. (b) RGB gradient optical ow (c) shadow-shadinginvariant optical ow and (d)
robust shadow-shadinginvariant optical ow.
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(a) (b) (c) (d) (e)

Figure C.14: Chapter 5: (a) input image with Canny edge detection based on suc-
cessively(b) luminance derivative (c) RGB derivatives (d) the shadow-shadingquasi-
invariant (e) the shadow-shading-specular quasi-invariant.

(a) (b) (c)

Figure C.15: Chapter 5: (a) detected circles based on luminance (b) detected circles
based on shadow-shading-specular quasi-invariant (c) detected circlesbased on shadow-
shading-specular quasi-invariant.

(a) (b) (c)

Figure C.16: Chapter 5: (a) input image (b) the circularity coe�cient C (c) the
detected circles.
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Figure C.17: Chapter 6: The histograms of the distribution of the transformed deriva-
tives of the Corel image database in respectively the (a) RGB coordinates, (b) the
opponent coordinates and (c) the spherical coordinates. The three planes correspond
with the isosalient surfaces which contain (fr om dark to light) respectively 90%, 99%,
99:9%t of the total number of pixels.

(c) (d)

(a) (b)

Figure C.18: Chapter 6: (a) Example Soil data set and (c) frame from table-tennis
sequence. (b) and (d) results of Harris detector (red dots) and the Harris detector
with color boosting (yellow dots). The red dots mainly coincide with black and white
events,while the yellow dots are focussed on colorful points.
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(a) (b) (c) (d)

Figure C.19: Chapter 6: (a) and (c) Corel input images. (b) and (d) resultsof Harris
detector (red dots) and the Harris detector with color boosting (yellow dots). The red
dots mainly coincide with black and white events, while the yellow dots are focussed
on colorful points.

a

(a) (b) (c)

Figure C.20: Chapter 6: (a),(b) Two frames from two sequences with changing il lu-
mination conditions. (c) Repeatability as a function of the amount of color saliency
boosting for the two sequences. Dotted line for the nuts-sequence and the continuous
line for the fruit-basket sequence.
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(d) (h) (l)

(c) (g) (k)

(b) (f ) (j)

(a) (e) (i)

Figure C.21: Chapter 6: Respectively, the input image, RGB -gradient based saliency
map, the color boosted saliency map and the results with red dots (lines) for the
gradient-based method and yellow dots (lines) for the salient points after color saliency
boosting. (a),(b),(c),(d) Results for the focus points, (e),(f ),(g),(h) for the symmetry
points and (i),(j),(k),(l) for the global optimal regions and boundary method.


