
Color Features and Local Structure
in Images

Joost van de Weijer



This book is typeset by the author using LATEX2ε.

Copyright c© 2004 by Joost van de Weijer.
All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopy, recording,
or any information storage and retrieval system, without written permission from the
author.

ISBN 90-5776134-3



Color Features and Local Structure

in Images

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden
ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Aula der Universiteit
op donderdag 3 maart 2005 te 14.00 uur

door

Joost van de Weijer

geboren te Kisii, Kenia



Promotiecommissie:

Promotor: Prof. dr. ir. A. W. M. Smeulders
Co-promotor: dr. T. Gevers

Overige leden: Prof. dr. ir. E. Granum
Prof. dr. ir. F. C. A. Groen
Prof. dr. J. J. Koenderink
Prof. dr. ir. L. J. van Vliet
Dr. J. M. Geusebroek

Faculteit: Natuurwetenschappen, Wiskunde & Informatica

The work described in this thesis was supported by the Netherlands Organization for
Scientific Research (NWO) under grant 612-21-201.

Advanced School for Computing and Imaging

The work described in this thesis has been carried out at the Intelligent Sensory Infor-
mation Systems group of the University of Amsterdam, within graduate school ASCI.
ASCI dissertation series number 113.



Contents

1 Introduction 1
1.1 Color in Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 From Luminance to Color . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Photometric Information . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Color Distinctiveness . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Objectives and Approach . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Least Squares and Robust Estimation of Local Image Structure 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Least Squares Estimation of Local Image Structure . . . . . . . . . . . 8
2.3 Robust Estimation of Local Image Structure . . . . . . . . . . . . . . . 11

2.3.1 Zero-order Image Structure . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Higher-order Image Structure . . . . . . . . . . . . . . . . . . . 15
2.3.3 Color Image Structure . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Robust Estimation of Orientation . . . . . . . . . . . . . . . . . . . . . 19

3 Edge and Corner Detection by Photometric Quasi-Invariants 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 The Dichromatic Reflection Model . . . . . . . . . . . . . . . . . . . . 24
3.3 Photometric Variants and Quasi-Invariants . . . . . . . . . . . . . . . 26
3.4 Relations of Quasi-Invariants with Full Invariants . . . . . . . . . . . . 27

3.4.1 Spherical Color Space . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Opponent Color Space . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 The Hue Saturation Intensity Space . . . . . . . . . . . . . . . 29
3.4.4 Characteristics of Quasi-Invariants . . . . . . . . . . . . . . . . 30

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.1 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Photometric invariant corner detection . . . . . . . . . . . . . . 33

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Curvature Estimation in Oriented Patterns Using Curvilinear Mod-
els 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



ii CONTENTS

4.2 Oriented Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Straight-Oriented Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Curved Oriented Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6.1 Confidence measure as selection criterion . . . . . . . . . . . . 42
4.6.2 Bias of the Actual Confidence Measure . . . . . . . . . . . . . . 42
4.6.3 Approximation Error of the Confidence Measure . . . . . . . . 43
4.6.4 Robustness of the Curvature Estimator . . . . . . . . . . . . . 43
4.6.5 Application of Curvilinear Models to Real-World Data Sets . . 44

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.9 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Robust Photometric Invariant Features from the Color Tensor 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Tensor-Based Features for Color Images . . . . . . . . . . . . . . . . . 50

5.2.1 Invariance to Color Coordinate Transformations . . . . . . . . 51
5.2.2 The Color Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.3 Photometric Invariant Derivatives . . . . . . . . . . . . . . . . 52

5.3 Robust Full Photometric Invariance . . . . . . . . . . . . . . . . . . . 55
5.4 Color Tensor-Based Features . . . . . . . . . . . . . . . . . . . . . . . 56

5.4.1 Eigenvalue-Based Features . . . . . . . . . . . . . . . . . . . . . 57
5.4.2 Adaptations of the Color Tensor . . . . . . . . . . . . . . . . . 57
5.4.3 Color Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.1 Photometric Invariant Harris Point Detection . . . . . . . . . . 60
5.5.2 Color Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.3 Color Canny Edge Detection . . . . . . . . . . . . . . . . . . . 63
5.5.4 Circular Object Detection . . . . . . . . . . . . . . . . . . . . . 63
5.5.5 Local Color Symmetry Detector . . . . . . . . . . . . . . . . . 65

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Boosting Color Saliency in Image Feature Detection 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Color Distinctiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Physics-Based Decorrelation . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3.1 Spherical Color Spaces . . . . . . . . . . . . . . . . . . . . . . . 70
6.3.2 Opponent Color Spaces . . . . . . . . . . . . . . . . . . . . . . 70
6.3.3 Hue-Saturation-Intensity Color Spaces . . . . . . . . . . . . . . 71

6.4 Statistics of Color Images . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5 Boosting Color Saliency . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5.1 Influence of Color Saliency Boosting on Repeatability . . . . . 73
6.6 Experiments and Illustrations . . . . . . . . . . . . . . . . . . . . . . . 74

6.6.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



CONTENTS iii

6.6.2 Color Distinctiveness . . . . . . . . . . . . . . . . . . . . . . . . 75
6.6.3 Repeatability: signal-to-noise . . . . . . . . . . . . . . . . . . . 77
6.6.4 Repeatability: photometric variation . . . . . . . . . . . . . . . 78
6.6.5 Illustrations Generality . . . . . . . . . . . . . . . . . . . . . . 79

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Summary and Conclusions 81
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Bibliography 85

Samenvatting 91

Dankwoord 93

Color Plates 95





Chapter 1

Introduction

When asked about the importance of color, Picasso in one of his blue years exclaimed:
“Colors are only symbols. Reality is to be found in luminance alone.” His message
seems to be taken to heart by the computer vision community. In general the first
thing to do, when trying to interpret the content of images, when looking for objects,
persons, textures, or at a smaller scale for edges, ridges, and corners, is to discard
color. In fact, color is seen as superfluous in a world which can be very well understood
by considering luminance alone. This is reflected in the fact that the majority of the
current existing computer vision applications is solely based on luminance.

When asking a person who became colorblind later in life, about the importance
of color. He will answer that he sometimes wrongly identifies objects where there are
only shadows present. When driving the car he suddenly brakes to stop for a shadow
blocking the road [61]. Next to that, he sometimes encounters problems distinguishing
between objects, e.g. mistaking ketchup for jam, and mustard for mayonnaise [61].
These confusions caused by color blindness surely point out the importance of color
in interpreting the visible world.

Two major advantages of using color vision are revealed from the previous ex-
ample. First, color provides extra information which allows the distinction between
various physical causes for color variations in the world, such as changes due to shad-
ows, light source reflections, and object reflectance variations. This helps to quickly
identify the black object on the road as a shadow. Next to this, color is an impor-
tant discriminative property of objects, allowing us to distinguish between mustard
and mayonnaise. This thesis explores these aspects of color, proposing theory and
techniques to improve the usefulness of color for computer vision.

1.1 Color in Computer Vision

1.1.1 From Luminance to Color

From a mathematical viewpoint the extension from luminance to color signals is
an extension from scalar-signals to vector-signals. This change is accompanied by

1
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(a) (b) (c) (d) (e)

Figure 1.1: (a) Example image and (b) linear smoothed version of example image. (c)
Red channel, (d) green channel and (e) blue channel of example image (see also color
plate C.1).

several mathematical obstacles. Straightforward application of existing luminance-
based operators on the separate color channels, and subsequent combination of the
results, fails due to undesired artifacts [1].

For example, smoothing a color image with a Gaussian filter blurs the edges, which
is also common for luminance based smoothing. In color images linear smoothing
introduces new chromaticities. An example is given in Fig. 1.1 where, after linear
smoothing, the color purple appears between the blue and red region. These new
chromaticities are visually unacceptable and new techniques are required for the task
of color image enhancement.

To prevent the introduction of new chromaticities, non-linear operations are re-
quired. In contrast to luminance values there is no natural ordering for vector values,
meaning that there is no generally accepted method to say that one vector is larger
than another. Therefore, new algorithms are required for the computation of known
non-linear operators such as the median, local and global mode [1], [59], [73], [84].
A framework in which these non-linear operators are elegantly brought together is
the Imprecision Space of Griffin [22], also known as locally orderless images by Koen-
derink [41], [84]. Apart from the spatial scale, defining the size of the spatial extent
of a measurement, the tonal scale is introduced describing its extent along the inten-
sity axis. As a consequence, points are no longer described by a single value, but by
a local histogram instead. Extension of this framework to color, although straight-
forward, is practically unusable due to the computational complexity caused by the
high-dimensionality of such color histograms. Since the operations based on the lo-
cal histograms remain desired for color images, efficient algorithms are needed which
prevent the actual computation of the local color histograms.

A second mathematical hurdle in the extension from luminance to color-based
operations is how to combine the differential structure of color images. Combining
the derivatives with a simple addition of the separate channels results in cancellation
in the case of opposing vectors [11]. This is illustrated in Fig. 1.1c,d,e. For the
blue-red and cyan-yellow edge in Fig. 1.1 the vectors in the red and blue channel
point in opposite directions and a summation will result in a zero edge response,
while an edge is obviously present. Also for more complex local features, such as
corners and T-junctions, the combination of the channels poses problems. Applying a
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(a) (b) (c)

Figure 1.2: (a) Example image, (b) human scene segmentation and (c) standard com-
puter edge detection (see also color plate C.2).

corner detector to the separate channels results in a single detected corner in the blue
channel. However, there is no evidence for the cross-points with the circle in any of
the separate channels. Hence, a combination of corner information from the separate
channels might fail. New methods are required to combine the differential structure
of color images in a principled way.

1.1.2 Photometric Information

There are several causes of color value composition in images, including shadows,
shading, specularity and material edges. In Fig. 1.2, an example of a real-world scene
is given, together with a human segmentation (groundtruth) [50]. Furthermore, in
Fig. 1.2c the result of a standard edge detection algorithm is given. The algorithm
returns more edges than the human segmentation. The problem is how to measure the
importance of edges. An important indicator may be derived from the physical cause
of an edge. Is the edge caused by a shadow, shading, highlight, or a object reflectance
change in the scene? The human segmentation discards all scene incidental edges, such
as the shading of the peppers and the specularities. Hence, for scene interpretation
it is important to distinguish between the various causes of features in images.

The dichromatic reflection model, introduced to computer vision by Shafer [66],
provides a physical model which identifies how photometric changes influence RGB-
values. Based on this model, others provided methods for segmentation, classification,
and recognition which are independent of scene incidental events. These methods fo-
cussed on zeroth order photometric invariance [18], [20], [38], [52], [71]. The effect of
the dichromatic model on higher order, differential-based algorithms remained unex-
plored for long.

Differential photometric invariance is investigated by Geusebroek et al. [16]. The
drawbacks of photometric invariance theory, loss of discriminative power and dete-
rioration of noise characteristics [69], are inherited by the differential photometric
operations. To improve performance, the impact of the instability of photometric in-
variants can be diminished through a noise propagation analysis of the invariants [19].
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(a) (b)

Figure 1.3: (a) Example image, and (b) results of a standard salient point detector
(see also color plate C.3).

However, a drawback is that proper noise estimation is required which is not always
available. Hence, methods are required to compute robust photometric invariants
without a-priori knowledge of the noise characteristics.

1.1.3 Color Distinctiveness

Describing objects in the world as a set of salient points is currently used with success
in object recognition, matching and retrieval [47], [63], [65], [85]. The distinctiveness
of the selected salient points is of critical importance for the applicability of the
method. It defines the conciseness of the representation and the discriminative power
of the local features.

For example, in Fig. 1.3, a picture of two brightly colored parrots on a dull back-
ground is depicted. In Fig. 1.3b the most prominent corners computed by the Harris
salient point detector are depicted [27]. Only four out of the twenty points correspond
to the salient parrots. And, none of the points focus on the bright red-yellow transi-
tion which immediately attracts the eye. The weakness of the salient point detector
is mainly in its disregard of color information.

Although the majority of image data is in color format nowadays only little work
has been done in incorporating color into salient point detection and evaluation [29],
[33]. One of the reasons luminance-based methods remain much used is because the
lack of significant improvement with respect to luminance based methods. This can be
explained by the important observation that the majority of differential variation in
color images is along the luminance axis. A drawback of the success of the luminance
representation, is that when looking for rare events, the axis of major variation is of
much less importance. For the computation of the distinctive points in the image,
the focus should be on rare events. For these events the axes of relatively little varia-
tion become indispensable, and hence for salient point detection color information is
crucial.
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1.2 Objectives and Approach

In this thesis, we aim to improve the three aspects of color vision discussed above.
From the above discussion we arrive at the following three objectives:

1. From Luminance to Color: Extend luminance-based algorithms to color in
a mathematically sound way. One consequence is that color image enhancement
methods do not introduce new chromaticities. A second implication is that for
differential-based algorithms the derivatives of the separate channels should be
combined without loss of derivative information.

In chapter 2, an image enhancement method for color images is proposed which is
based on the minimization of a robust error norm [9], [32]. Interpreting color image
enhancement as a robust estimation problem reduces the introduction of unwanted
new chromaticities. In the case of a zeroth order local model, the method is proven to
be equal to finding the local mode in a histogram. However, it has the advantage that
the histogram is never computed. Higher order local models allow for more complex
local structures, and therefore yield better image enhancement results.

The problem of opposing vectors, which occurs for all color image edges, only
occurs for a particular class of luminance images. Namely, for oriented patterns,
which are patterns with one dominant orientation, such as fingerprint data and seismic
images [37]. These patterns are characterized by their high frequency nature. The
local differential structure consists of quickly succeeding valleys and ridges, with local
gradients pointing in opposing directions. Existing operations fail on these images
since they are designed for neighborhoods which can be locally modelled as a step-
edge. To cope with the opposing vector problem new operations are needed. The
solution is found in tensor mathematics, in which opposing vectors reinforce each
other [6], [8], [24]. For local curvature estimation the existing method [86] also fails
for oriented patterns. In chapter 4, tensor mathematics is used to derive a local
curvature estimator for oriented patterns.

Due to the symmetry between the opposing vector problem for color images and
oriented patterns, the operations which were proposed for oriented pattern images
are straightforwardly extendable to color images. In chapter 5, an overview of tensor-
based features [6], [27], [44] is given and extensions of the features to color images are
proposed.

We focus on low-level operations when incorporating color into existing luminance-
based algorithms. To handle the mathematical obstacles two methods are proposed.
Firstly, for color image enhancement a method is proposed which prevents the intro-
duction of new chromaticities. Secondly, a mathematical model is proposed which
combines the differential structure of the color channels.

2. Photometric Information: Compute photometric invariant differential infor-
mation in a robust way. Here we focus on the class of applications for which
no a-priori knowledge of the noise characteristics of the acquisition system is
available.
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In chapter 3, a new set of derivatives is proposed which we refer to as quasi-invariants.
These quasi-invariants share with full photometric invariants [16], [18] the property
that they are insensitive to certain photometric edges, but do not have the inherent
instabilities of full photometric invariants.

In chapter 5, a framework for color image features is proposed which couples
color tensor-based features with photometric quasi-invariants and full photometric
invariants. The applicability of the quasi-invariants is restricted to feature detection,
which is the localization of features in the image. For photometric invariant feature
extraction, where local descriptors are extracted from the image, full invariance is still
required. To improve the robustness of the full invariants, uncertainty measures of full
invariants are derived [19]. The tensor framework elegantly allows incorporation of
uncertainty measures. A variety of local image features is derived from this robustified
invariant color tensor.

3. Color Distinctiveness: Improve the distinctiveness of salient point detection
algorithms by explicitly incorporating color statistics into the detector design.

In chapter 6, color distinctiveness is explicitly incorporated into the design of differential-
based saliency detection [6], [27], [29]. An algorithm is proposed, which is called color
saliency boosting. It starts from an analysis of the statistics of color image derivatives.
Based on this study, the salient point detector is adapted in such a way that deriva-
tives with equal saliency have equal impact on the saliency function. The adaptation
is general. It is easily extendable to existing feature detectors.



Chapter 2

Least Squares and Robust

Estimation of Local Image

Structure ∗

2.1 Introduction

Linear scale-space theory of vision not only refers to the introduction of an explicit
scale-parameter, it also refers to the use of differential operators to study the local
structure of images. The classical way to observe the local differential image structure
is to consider all Gaussian derivatives at scale s up to order N. Basically what we do is
construct the Taylor series expansion of the smoothed image (i.e. the image observed
at scale s). The Taylor polynomial thus is an approximation of the smoothed image
and not of the original image.

Instead of constructing a polynomial local model of the smoothed image we can
equally well construct a polynomial approximation of the unsmoothed image. Our
starting point is the image facet model as introduced by Haralick et al. [25]. His
facet model takes a polynomial function and fits it to the data observed in a small
neighborhood in the image using a linear least squares estimation procedure. The
image derivatives then can be calculated as the derivatives of the fitted analytical
function.

Farnebäck [12] generalizes the Haralick facet model to incorporate spatial weights
in order to express the relative importance of the image samples in estimating the
parameters of the polynomial function. In the classic Haralick facet model all points
in the local neighborhood are considered equally important.

For spatial weighting the choice of the Gaussian kernel leads to a specially efficient
implementation. Due to the fact that the derivatives of the Gaussian function are
given by a polynomial (determined by the order of differentiation) times the Gaussian

∗Accepted for publication by the International Journal of Computer Vision [77]
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function itself, the coefficients in the polynomial function turn out to be a linear
combination of the Gaussian derivatives.

The least squares estimation procedure considers all points in a local neighbor-
hood, even in the situation where the local neighborhood is on the boundary of two
regions in an image. The regions on either side of the boundary may well be approxi-
mated with a low-order polynomial model. The regions can be so different that their
union cannot be accurately described using the same low order polynomial model.
The estimation procedure then compromises between the two regions: the edge will
be smoothed.

In 2.2 we generalize the Gaussian facet model to deal with those multi-model
situations. Instead of using a linear least squares estimation procedure we will use
a robust estimation technique. A robust estimation technique will only consider the
data points from one of the regions and will disregard the data from the other region
as being statistical outliers. Robust estimation of local image structure is pioneered
by Besl [5]. Our work (see also [78]) differs from the work of Besl in that we consider
Gaussian aperture instead of ‘crisp’ neighborhoods in which the polynomial function
is fitted. Furthermore we introduce a fixed point iteration procedure to find the robust
estimate.

In 2.3 we present a generalization of earlier work [78], [81], [82]. We derive iterative
robust estimators of local image structure and we will give some examples ranging
from a simple zero order Gaussian facet model to a first order facet model for color
images.

In 2.4 we describe a robust estimator for a derived image quantity: the local ori-
entation (see also [82]). To that end we consider the often used orientation estimator
based on a eigen analysis of the structure tensor. Robust estimation of the orienta-
tion turns out to be quite similar, the structure tensor is replaced with a ‘robustified’
version in which only the points are considered that closely fit the model (i.e. the
points that are not outliers).

2.2 Least Squares Estimation of Local Image Struc-

ture

Locally around a point x the image function f can be approximated with a linear
combination of basis functions φi, i = 1, . . . ,K:

f̂ = a1φ1 + · · · + aKφK . (2.1)

We can rewrite this as f̂ = Φa where Φ = (φ1 φ2 · · ·φK) and a = (a1 a2 · · · aK)T. The
least squares estimator minimizes the difference ε of the image f and the approxima-
tion f̂ :

ε(x) =

∫

Rd

(

f(x + y) − f̂(y)
)2

W (y)dy (2.2)

where W is the aperture function defining the locality of the model fitting. Note that
the optimal fitting function f̂ differs from position to position in the image plane. We
thus have that f̂(y) = Φ(y)a(x), i.e. f̂(y) = a1(x)φ1(y) + · · · + aK(x)φK(y).
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The optimal parameter vector a is found by projecting the function f onto the
subspace spanned by the basis functions in Φ. In this function space the inner product
is given by:

fTg ≡ 〈f, g〉W =

∫

Rd

f(x) g(x)W (x) dx. (2.3)

The inner product of functions f and g will also be denoted as fTg.
To derive the optimal parameter vector a we take the derivative of the error ε

with respect to the parameter vector a, set it equal to zero and solve for a. Writing
ε in terms of the inner product results in

ε(x) = (f−x − Φa)T(f−x − Φa) (2.4)

where f−x(y) = f(x + y) is the translated image f−x(y) = f(x + y). The integral is
now ‘hidden’ in the inner product of two functions. This can be rewritten as:

ε(x) = fT

−xf−x − 2aTΦTf−x + aTΦTΦa. (2.5)

Taking the derivative of ε with respect to a and setting this equal to 0 and solving
for a we obtain:

a = (ΦTΦ)−1ΦTf−x = Φ̃Tf−x (2.6)

where Φ̃ = Φ(ΦTΦ)−1 is the dual basis. The functions in the dual basis, Φ̃ =
(

φ̃1 · · · φ̃K

)

, are the functions such that the inner product φ̃T

i f−x equals the co-

efficient ai in the approximation f̂ = a1φ1 + · · · + aKφK . The dual basis functions,
multiplied with the aperture function, thus are the correlation kernels needed to cal-
culate the coefficients in the polynomial image approximation.

The classic Haralick facet model uses a uniform weight function W (x) = 1 for
‖x‖∞ ≤ s and W (x) = 0 elsewhere, i.e. a ‘crisp’ neighborhood within an axis aligned
square of size 2s × 2s.

For the second order polynomial basis:

Φ =
(

1, x, y, 1
2x2, xy, 1

2y2
)

(2.7)

the dual basis is

Φ̃ =
(

7
8 s2 − 15 x2

16 s4 − 15 y2

16 s4 , 3 x
4 s4 , 3 y

4 s4 , −15
8 s4 + 45 x2

8 s6 , 9 x y
4 s6 , −15

8 s4 + 45 y2

8 s6

)

. (2.8)

The dual basis functions are depicted in Fig. 2.1. The first dual basis function (mul-
tiplied with the aperture function) is the correlation kernel needed to calculate the
coefficient of the constant basis function in the approximation of the local image
patch. Observe that in the Haralick facet model, the first dual basis function is not
everywhere positive. Fig. 2.1 also shows the discrete dual basis functions, these follow
from a formulation of the facet model in a discrete image space as can be found in
the work of Haralick.

Within a scale-space context the most natural choice is to start with a polynomial
basis and a Gaussian aperture function W = Gs where Gs is the Gaussian function



10 Chapter 2. Least Squares and Robust Estimation of Local Image Structure

Figure 2.1: The Haralick Facet Model. From left to right, top to bottom the dual
basis functions are plotted. The shaded functions are the dual basis functions within a
2nd order facet model, the (red) stars correspond with the discrete dual functions. The
neighborhood was taken to be of size 5 × 5. The scale s for the analytical kernel was
set at s = 2.42. This value is the value to make the difference between the discrete and
analytical facet models minimal. For larger neighborhoods N ×N the correspondence
becomes better and the analytical scale approaches N/2.

at scale s. Again starting with the second order polynomial basis the dual basis is a
different one due to the difference in the inner product (as a consequence of a different
aperture function):

Φ̃ =
(

2 − x2

2 s2 − y2

2 s2 , x
s2 , y

s2 , −s−2 + x2

s4 , x y
s4 , −s−2 + y2

s4

)

. (2.9)

Again, a dual basis function, multiplied with the—Gaussian—aperture function is the
correlation kernel needed to calculate the corresponding coefficient in the polynomial
approximation of the local image patch. For the zero order coefficient the correlation

kernel is a Gaussian function multiplied with a parabola: (2 − x2

2 s2 − y2

2 s2 )Gs(x, y).
Again we see that the zero order coefficient in the polynomial image approximation
requires a kernel with negative values.

The derivatives of the Gaussian function are equal to a polynomial function (a
Hermite polynomial depending on the derivative taken) times the Gaussian function,
we may write the correlation kernels associated with the dual basis functions in the
Gaussian facet model as a linear combination of Gaussian derivatives. It is not hard
to prove that the zero order coefficient in the second order Gaussian facet model is
found by convolving the image f with the kernel:

Gs − 1
2s2

(

Gs
xx + Gs

yy

)

. (2.10)

Now we easily recognize where the negative values in the kernel come from. The term
Gs is the Gaussian scale-space smoothing term. The term − 1

2s2
(

Gs
xx + Gs

yy

)

is a
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Figure 2.2: Zero-order coefficient in the Gaussian Facet Model. On the first
row, from left to right: the original image, and the zero order coefficients in the
Gaussian facet model of order 0, 2 and 6. On the second row the convolution kernel
is shown that, convoluted with the original image, results in the image above it.

well-known sharpening term: subtracting the Laplacian from the smoothed image,
sharpens the image. The sharpening term is due to the fact that the Gaussian facet
model approximates the original image, not the smoothed image.

It turns out that this observation is true for higher order facet models as well. For
a 4th order Gaussian facet model, the kernel to calculate the zero order coefficient is:

Gs − 1
2s2

(

Gs
xx + Gs

yy

)

+ 1
8s4

(

Gs
xxxx + 2Gs

xxyy + Gs
yyyy

)

. (2.11)

In Fig. 2.2 the kernels to calculate the zero order coefficient in the Gaussian facet
model of orders 0, 2 and 6 are depicted together with the convoluted images. Appar-
ently the N -jet of an image observed at scale s encodes details of size less then s, i.e.
from the N -jet observed at scale s a lot of detail can be reconstructed.

2.3 Robust Estimation of Local Image Structure

Consider again the error of the Gaussian weighted least squares approximation:

ε(x) =

∫

Rd

(

f(x + y) − f̂(y)
)2

Gs(y)dy. (2.12)

It is well known that this error definition is not well suited for those situations were
we have outliers in our measurements. In the image processing context statistical
outliers are not so frequently occurring. The effect that makes least squares estimates
questionable is that when collecting measurements from a neighborhood in an image
these are often not well modelled using a simple (facet) model. For instance we may
model local image luminance quite well with a second order polynomial model but
not near edges where we switch from one model instantiation to another. Such multi-
model situations are abundant in computer vision applications and are most often
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Figure 2.3: Quadratic versus (robust) Gaussian error norm.The Gaussian error
norm is of ‘scale’ m = 0.7.

due to the nature of the imaging process where we see abrupt changes going from one
object to another object.

Multi-modality can be incorporated into sophisticated estimation procedures
where we not only estimate (multi-)model parameters but also the geometry that
separates the different regions (one for each model). One of the oldest examples is
perhaps Hueckels edge detector [30] in which a local image patch is described with
two regions separated by a straight boundary. The detector estimates this boundary
and the parameters of the luminance distributions on each side of the edge.

In this paper we take a less principled approach. Instead of a multi-model approach
we stick to a simpler one-model approach where we use a statistical robust estimator
that allows us to consider part of the measurements from the local neighborhood to
belong to the model we are interested in and disregard all other measurements as
being ‘outliers’ and therefore not relevant in estimating the model parameters.

The crux of a robust estimation procedure is to rewrite the above error measure
as:

ε(x) =

∫

Rd

ρ(f(x + y) − f̂(y))Gs(y)dy (2.13)

where ρ is the error norm. The choice ρ(e) = e2 leads to the least squares estimator.
Evidently measurements that are outliers to the ‘true’ model are weighted heavily in
the total error measure. Reducing the influence of the large errors leads to robust
error norms.

Writing f−x(y) = f(x + y) and using the local linear model f̂(y) = Φ(y)a(x) we
obtain:

ε(x) =

∫

Rd

ρ(f−x − Φa(x))Gs dy. (2.14)

We omitted the spatial argument y for ease of notation. In this paper the ‘Gaussian
error norm’ is chosen:

ρ(e) = 1 − exp

(

− e2

2m2

)

. (2.15)

The scale m in the error norm will be called the model scale to contrast it with the
spatial scale s that is used in the spatial aperture function Gs. In Fig. 2.3 the error
norm is sketched. Compared to the quadratic error norm this norm is ‘clamped’ at



2.3. Robust Estimation of Local Image Structure 13

value 1. For e � m the exact value of the error is not important any more. Gross
outliers are therefore not given the weight to influence the estimation greatly.

The optimal model parameters are found by calculating the derivative of the error
measure and setting this equal to zero:

∂ε

∂a
=

∂

∂a

∫

Rd

ρ(f−x − Φa(x))Gs dy (2.16)

=
∂

∂a

∫

Rd

(

1 − exp

(

− (f−x − Φa(x))2

2m2

))

GS dy (2.17)

= − 1

m

∫

Rd

(f−x − Φa(x))Φ exp

(

− (f−x − Φa(x))2

2m2

)

Gs dy. (2.18)

Setting this derivative equal to zero and rewriting terms we obtain:

∫

Rd

f−x Φexp

(

− (f−x − Φa(x))2

2m2

)

Gs dy =

∫

Rd

Φa(x)Φ exp

(

− (f−x − Φa(x))2

2m2

)

Gs dy. (2.19)

This can be rewritten as:

∫

Rd

f−x ΦGm (f−x − Φa(x)) Gs dy =

∫

Rd

Φa(x)ΦGm (f−x − Φa(x)) Gs dy (2.20)

where Gm is the Gaussian function at scale m. This Gaussian function weighs the
model distance, whereas the Gaussian function Gs weighs the spatial distance.

We define the operator Γ:

(Γmg)(y) = Gm(f−x(y) − Φ(y)a(x))) g(y) (2.21)

i.e. the point wise multiplication of the function g with the model weight function.
Now Γm acts as a diagonal (matrix) operator in the function space. Using the vectorial
notation of the inner product we can write:

ΦTΓmf−x = ΦTΓmΦa. (2.22)

This looks like a familiar weighted linear least squares equation that can be solved
for the value of a. It is not, because Γm is dependent on a. Solving for a can be done
using an iterated weighted least squares procedure:

ai+1 =
(

ΦTΓ(ai)Φ
)−1

ΦTΓ(ai)f−x. (2.23)

Some examples of these robust estimators may clarify matters. In the next subsection
we consider the most simple of all local structure models: a locally constant model.
The resulting image operator turns out to be an iterated version of the bilateral filter
introduced by Tomasi and Manduchi [72].
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Figure 2.4: Robust Estimation of Local Image Structure.On the first row a
test image with noise added on the left and the result of the robust estimator based on
a zero-order facet model. On the second row the histograms of the images above are
depicted. Observe that the robust estimator is capable of finding the modes of both the
distributions.

2.3.1 Zero-order Image Structure

Consider a locally constant image model with only one basis function:

Φ = (1) (2.24)

i.e. the constant function. Eq.(2.23) then reduces to:

ai+1
0 (x) =

∫

Rd f(x + y)Gm(f(x + y) − ai
0(x))Gs(y) dy

∫

Rd Gm(f(x + y) − ai
0(x))Gs(y) dy

. (2.25)

This is an iterated version of the bilateral filter as introduced by Tomasi and Man-
duchi [72]. It is also related to the filters introduced by Smith et al. [70]. The bilateral
filter thus implements one iteration of a robust estimator with initial value a0

0 = f .
In previous papers [78], [81] we have analyzed robust estimation of the zero order

local image structure. Some observations made are:

• The robust estimator finds the local mode in the local luminance histogram
which is smoothed with a Gaussian kernel of scale m. The local mode that is
found is the local maximum in the smoothed histogram that is closest to the
initial value.

• Bilateral filtering implements one iteration of the robust estimator. From mean
shift analysis we know that the first step in a mean shift algorithm is a large one
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Figure 2.5: Robust Estimation and Non-linear diffusion.On the left the original
image of a flower. In the middle the robust estimation of the zero order local structure
and on the right the result of iteratively applying one iteration of the robust estimator,
each time using the image data from the previous iteration (this procedure is very much
like a non-linear diffusion process).

in the direction of the optimal value. This explains the impressive results on the
bilateral filter in reducing the noise while preserving the structure of images.

• The choice of an initial estimate is very important. We have found good results
using the result of a linear least squares estimate as the initial estimate. In
certain situations however the amount of smoothing induced by the least squares
estimator sets the robust estimator at a wrong starting point leading to a local
maximum in the histogram that does not correspond with the structure that
we are interested in. This situation is often occurring in case the area of the
structure of interest is less then the area of the ‘background’ (e.g. document
images where there is more paper then ink visible). In such cases the image
itself can be used as an initial estimate of the zero order local structure.

• The results of robust estimation of local image structure bear great resemblance
to the results of non-linear diffusion. The theoretical link between robust esti-
mation and non-linear diffusion techniques has been reported before (see [9]).
The main difference with the robust estimator technique described here is that
in each iteration of a non-linear diffusion algorithm the image data resulting
from the previous iteration is used. In the robust estimator described here we
stick to the original image data and only update the parameter to be estimated.
Fig. 2.5 shows the differences between these two procedures.

2.3.2 Higher-order Image Structure

For the image in Fig. 2.4 the assumption of local constant image model is a correct
assumption, for most natural images such a model is an oversimplification though.
Then it is better to use a higher order model for the local image structure. We start
with a simple first order model for 1D functions. The local basis is:

Φ =
(

1 x
)

. (2.26)
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Figure 2.6: Robust Estimation of Local Structure in 1D functions. A ‘saw-
tooth’ function with added noise is shown together with the Gaussian linear least
squares estimate, i.e. the Gaussian smoothing (the thin ‘sinusoidal’ line), the robust
estimate based on a zero order facet model (the dashed-dotted line) and the robust
estimate based on a first order model (the thick dashed line). The spatial scale is 9
and the tonal (model) scale is 0.1. The number of iterations used is 10.

This leads to the matrix ΦTΓmΦ:

( ∫

R
Gm(f(x + y) − ai

0 − ai
1y)Gs(y)dy

∫

R
y Gm(f(x + y) − ai

0 − ai
1y)Gs(y) dy

∫

R
y Gm(f(x + y) − ai

0 − ai
1y)Gs(y) dy

∫

R
y2 Gm(f(x + y) − ai

0 − ai
1y)Gs(y) dy

)

(2.27)
and vector ΦTΓmf−x:

( ∫

R
f(x + y)Gm(f(x + y) − ai

0 − ai
1y)Gs(y) dy

∫

R
y f(x + y)Gm(f(x + y) − ai

0 − ai
1y)Gs(y) dy

)

. (2.28)

The robust estimator of the local linear model is given by Eq.(2.23). Fig. 2.6 shows
a univariate ‘saw-tooth’ signal corrupted with additive noise. Also shown are the
robust estimates based on a zero order facet model and the robust estimate based
on a first order facet model. It is obvious that a robust estimator based on a local
constant model is not capable of reconstructing the saw tooth signal from the noisy
observations. Using a local first order model leads to a far better reconstruction.

The first order robust facet model is easily generalized to 2D functions:

Φ =
(

φ(00) φ(10) φ(01)

)

(2.29)

=
(

1 x1 x2

)

. (2.30)
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Figure 2.7: Robust Estimation of Local Image Structure. On the left the
cameraman image with noise added and on the right the robust estimation of the zero
order coefficient in a first order facet model.

This leads to the matrix ΦTΓmΦ:




∫

R2 GmGsdy
∫

R2 y1G
mGsdy

∫

R2 y2G
mGsdy

∫

R2 y1G
mGsdy

∫

R2 y2
1GmGsdy

∫

R2 y1y2G
mGsdy

∫

R2 y2G
mGsdy

∫

R2 y1y2G
mGsdy

∫

R2 y2
2GmGsdy



 (2.31)

to simplify the notation we have omitted the arguments of the functions in the inte-
grand. For the Gm-function the argument is the model error f(x+y)−a00 −a10y1 −
a01y2. The vector ΦTΓmf−x equals





∫

R2 f(x + y)Gm(f(x + y) − a00 − a10y1 − a01y2)G
s(y)dy

∫

R2 y1f(x + y)Gm(f(x + y) − a00 − a10y1 − a01y2)G
s(y)dy

∫

R2 y2f(x + y)Gm(f(x + y) − a00 − a10y1 − a01y2)G
s(y)dy



 . (2.32)

Eq.(2.23) then can be used to calculate the new estimate of the optimal parameter
vector ai+1.

In Fig. 2.7 the robust estimation of the zero order coefficient based on a first order
facet model is shown. For this image the difference with a zero order facet model
estimation can only be observed in regions of slowly varying luminance (like in the
background).

2.3.3 Color Image Structure

In this section we generalize the robust facet models for scalar images to models for
vectorial images. The analysis is done for color images but is valid for all vectorial
images.

A color image f = (f1 f2 f3) at any position x has three color components f 1(x),
f2(x) and f3(x). The local model for a color image using a basis

Φ = (φ1 φ2 · · · φK) (2.33)
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Figure 2.8: Robust Estimation of Local Structure in Color Images. On the
first row from left to right: the ‘Lena’ image with some noise added to it, the zero-
order facet model based robust estimator of the values and the robust estimator based
on a first order based facet model. On the second row we show a detail from the image
above (see also color plate C.4).

is chosen as:
f̂(x + y) = ΦA = Φ

(

a1 a2 a3

)

(2.34)

where A =
(

a1 a2 a3

)

is the K×3 parameter matrix. The column ai represents

the parameter vector in the approximation f̂i = Φai of the i-th color component.
Each of the color components is thus approximated as a linear combination of K
basis functions. The model error is now written as:

ε(x) =

∫

Rd

ρ

(

√

(f1
−x − Φa1)2 + (f2

−x − Φa2)2 + (f3
−x − Φa3)2

)

Gs(y)dy. (2.35)

It is not hard to prove that in this case

∂ε

∂A
= 0 ⇐⇒ ΦTΓmf = ΦTΓmΦA (2.36)

where Γm is the ‘diagonal’ operator that multiplies a function point wise with the
function: Gm

(

(f1
−x − Φa1)

2 + (f2
−x − Φa2)

2 + (f3
−x − Φa3)

2
)

. As Γm is dependent
on the parameter matrix A we arrive at a iterated weighted least squares estimator:

Ai+1 = (ΦTΓm(Ai)Φ)−1ΦTΓm(Ai) f . (2.37)
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Figure 2.9: Histograms of gradient vector space. In (a) an image (64 × 64) is
shown with in (b) the histogram of all gradient vectors (where darker shades indicate
that those gradient vectors occur often in the image. In (c) a composition of two
differently oriented patterns is shown with corresponding histogram in (d).

The estimation of the robust facet model for color images is thus almost the same as
for scalar images. The three color components are dealt with independently, only the
error weights operator Γm is dependent on all three color components.

In Fig. 2.8 the robust estimators are shown that are based on a zero order facet
model and on a first order facet model. Especially in the nose-region the first order
model based robust estimator performs better then the zero order model based robust
estimator.

2.4 Robust Estimation of Orientation

In the previous sections we have considered local image models for the image values
(grey value and color). In this section we look at robust estimation of the orientation
of image structures.

Oriented patterns are found in many imaging applications, e.g. in fingerprint anal-
ysis, and in geo-physical analysis of soil layers. The classical technique to estimate the
orientation of the texture is to look at the set of luminance gradient vectors in a local
neighborhood. In an image patch showing a stripe pattern in only one orientation we
can clearly distinguish the orientation as the line cluster in gradient space perpendic-
ular to the stripes (see Fig. 2.9(a-b)). A straightforward eigenvector analysis of the
covariance matrix will reveal the orientation of the texture. The covariance matrix
of the gradient vectors in an image neighborhood is often used to estimate the local
orientation [37], [8], [46], [91].

In case the local neighborhood is taken from the border of two differently oriented
patterns (see Fig. 2.9) an eigenvector analysis of the covariance matrix will mix both
orientations resulting in a ‘smoothing’ of the orientation estimation.

In case the regions showing different textures are of sufficient size it is possible
to use a post-processing step to sharpen the smoothed orientation measurements. A
classical way of doing so is the Kuwahara-Nagao operator [43], [56], [2]. At a cer-
tain position in an image this operator searches for a nearby neighborhood where
the (orientation) response is more homogeneous then it is at the border. That re-
sponse is then used at the point of interest. In this way the neighborhoods are not
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allowed to cross the borders of the textured regions. In [80] we have shown that the
classic Kuwahara-Nagao operator can be interpreted as a ‘macroscopic’ version of a
PDE image evolution that combines linear diffusion (smoothing) with morphological
sharpening.

Again consider the texture in Fig. 2.9(a). The histogram of the gradient vectors
in this texture patch is shown in Fig. 2.9(b). Let v be the true orientation vector of
the patch, i.e. the unit vector perpendicular to the stripes. In an ideal image patch
every gradient vector should be parallel to the orientation v. In practice they will not
be parallel. The error of a gradient vector g(y) observed in a point y with respect to
the orientation v(x) of an image patch centered at location x is defined as:

e(x,y) = ‖g(y) − (g(y)Tv(x))v(x)‖. (2.38)

The difference g(y)− (g(y)Tv(x))v(x) is the projection of g on the normal to v. The
error e(x,y) thus measures the perpendicular distance from the gradient vector g(y)
to the orientation vector v(x). Integrating the squared error over all positions y using
a soft Gaussian aperture for the neighborhood definition we define the total error:

ε(x) =

∫

Ω

e2(x,y)Gs(x − y)dy. (2.39)

The error measure can be rewritten as:

ε =

∫

Ω

gTgGsdy −
∫

Ω

vT(ggT)vGsdy. (2.40)

where we have omitted the arguments of the functions. Minimizing the error thus is
equivalent with maximizing:

∫

Ω

vT(ggT)vGsdy, (2.41)

subject to the constraint that vTv = 1. Note that v is not dependent on y so that
we have to maximize:

vT

(∫

Ω

(ggT)Gsdy

)

v = vTµsv (2.42)

where µs is the structure tensor.
Using the method of Lagrange multipliers to maximize vTµsv subject to the con-

straint that vTv = 1, we need to find an extremum of

λ(1 − vTv) + vTµsv. (2.43)

Differentiating with respect to v (remember that dvTAv/dv = 2Av in case A = AT)
and setting the derivative equal to zero results in:

µsv = λv. (2.44)

The ‘best’ orientation thus is an eigenvector of the structure tensor. Substitution
in the quadratic form then shows that we need the eigenvector corresponding to the
largest eigenvalue.
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The least squares orientation estimation works well in case all gradients in the
ensemble of vectors in an image neighborhood all belong to the same oriented pattern.
In case the image patch shows two oriented patterns the least squares estimate will
mix the two orientations and give a wrong result.

A robust estimator is constructed by introducing the Gaussian error norm once
again:

ε(x) =

∫

Ω

ρ(e(x,y))Gs(x − y)dy. (2.45)

In a robust estimator large deviations from the model are not taken into account very
heavily. In our application large deviations from the model are probably due to the
mixing of two different linear textures (see Fig. 2.9(c-d)).

The error, Eq.(2.45), can now be rewritten as (we will omit the spatial arguments):

ε =

∫

Ω

ρ

(

√

gTg − vT(ggT)v

)

Gsdy. (2.46)

Again we use a Lagrange multiplier to minimize subject to the constraint that vTv =
1:

d

dv

(

λ(1 − vTv) +

∫

Ω

ρ

(

√

gTg − vT(ggT)v

)

Gsdy

)

= 0. (2.47)

Using Eq.(2.15) as the error function leads to

η(v)v = λv (2.48)

where

η(v) =

∫

Ω

ggTGm(
√

gTg − vT(ggT)v)Gsdy. (2.49)

The big difference with the least squares estimator is that now the matrix η is de-
pendent on v (and on x as well). Note that η can be called a ‘robustified’ structure
tensor in which the contribution of each gradient vector is weighted not only by its
distance to the center point of the neighborhood, but also weighted according to its
‘distance’ to the orientation model. Weickert et al. [92] also introduce a non linear
version of the structure tensor that is close in spirit to the robust structure tensor η.

We propose the following fixed point iteration scheme to find a solution. Let vi

be the orientation vector estimate after i iterations. The estimate is then updated as
the eigenvector vi+1 of the matrix η(vi) corresponding to the largest eigenvalue, i.e.
we solve:

η(vi)vi+1 = λvi+1. (2.50)

The proposed scheme is a generalization of the well-known fixed point scheme (also
called functional iteration) to find a solution of the equation v = F (v).

Note that the iterative scheme does not necessarily lead to the global minimum
of the error. In fact often we are not even interested in that global minimum. Con-
sider for instance the situation of a point in region A (with orientation α1) that is
surrounded by many points in region B (with orientation β). It is not to difficult
to imagine a situation where the points of region B outnumber those in region A.
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Figure 2.10: Least Squares versus Robust Orientation Estimation. In (a) a
generated noise free image is shown. The texture is made out of two regions each
differently oriented. In (b) the orientation field α = arctan(v2/v1) is shown that
results from the least squares estimate. In (d) the orientation field is shown resulting
from the robust estimation. In (c) a detail of the orientation vector fields for both
the least squares estimation (dotted lines) and the robust estimation (solid lines) are
shown.

Figure 2.11: Least Squares versus Robust Orientation Estimation. Same
experiment as figure 10 but with noise added.

Nevertheless we would like our algorithm to find the orientation α whereas the global
minimum would correspond with orientation β. Because our algorithm starts in the
initial orientation estimate and then finds the local minimum nearest to the starting
point we hopefully end up in the desired local minimum: orientation α.

The choice for an initial estimate of the orientation vector is thus crucial in a
robust estimator in case we have an image patch showing multiple striped patterns.
In Fig. 2.10 and Fig. 2.11 robust estimation of orientation for a simple test image
is given. For the robust estimation we have used the orientation in location x that
resulted from the least squares estimator as the initial orientation vector in that point.
Only 5 iterations are used. For both examples it is evident that the robust estimation
performs much better at the border of the textured regions.



Chapter 3

Edge and Corner Detection

by Photometric

Quasi-Invariants ∗

3.1 Introduction

Feature detection, such as edge and corner detection, plays an important role in many
computer vision applications such as image segmentation, object recognition and im-
age retrieval [26]. A large number of feature detectors is based on the differential
structure of images [10], [27], [45]. However, in real-world applications there are var-
ious physical phenomena which trigger differential-based features, such as shadows,
shading, specularities, and object reflectance changes. It is important to differentiate
between the various physical causes of a feature.

An improvement in color understanding was the introduction of the dichromatic
reflection model by Shafer [66]. The model separates the reflected light into body
reflection (object color) and surface reflection (specularities). This separation results
in the classification of physical events, such as shadows and highlights. This is suited
for photometric invariant segmentation, object recognition, and retrieval [18], [38],
[51]. However, these methods are based on the zeroth order structure of images
and mostly involve the analysis of the RGB-values in color histograms. For the
photometric invariant theory to be applicable to differential-based operations other
methods are needed.

The connection between differential-based features and photometric invariance
theory is proposed by Geusebroek et al. [16]. This work provides a set of photometric
invariant derivative filters and uses them for invariant edge detection. However, the
non-linear transformations used to compute photometric invariants have several draw-

∗Accepted for publication by IEEE Transactions on Pattern Analysis and Machine Intelligence
[75]
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backs such as instabilities and loss of discriminative power. These drawbacks limit
the applicability of operations based on derivatives of these invariants. Traditionally,
the effect of instabilities is suppressed by ad hoc thresholding of the transformed val-
ues [28], [57]. A more elaborate approach is to apply error propagation through the
various color spaces to compensate for the undesired effects of instabilities and non-
linearities of the different photometric invariant spaces [19]. However, this approach
is based on a proper noise estimation system which is not always available in practice.

In this chapter we propose a new class of derivatives which we refer to as pho-
tometric quasi-invariants. These derivatives link derivative-based operations to the
theory of photometric invariance. Quasi-invariants are derived from the dichromatic
reflection model and are proven to differ from full photometric invariants by a scal-
ing factor. These quasi-invariants do not have the inherent instabilities of full pho-
tometric invariants, and from theoretical and experimental results it is shown that
quasi-invariants have better noise characteristics, discriminative power, and introduce
less edge displacement than full photometric invariants. The lack of full photometric
invariance limits the applicability of quasi-invariants to methods which are based on
a single image, such as edge and corner detection. Quasi-invariants cannot be used
for applications in which responses between multiple images are compared, such as
invariant object recognition.

3.2 The Dichromatic Reflection Model

In this section the dichromatic reflection model is discussed [66]. The dichromatic
model divides the reflection in the body (object color) and surface reflection (specu-
larities or highlights) component for optically inhomogeneous materials. Assuming a
known illuminant, ci = (α, β, γ)T , and neutral interface reflection, the RGB vector,
f = (R,G,B)T , can be seen as a weighted summation of two vectors,

f = e(mbcb + mici) (3.1)

in which cb is the color of the body reflectance, ci the color of the surface reflectance,
mb and mi are scalars representing the corresponding magnitudes of body and surface
reflection and e is the intensity of the light source. For matte surfaces there is no
interface reflection and the model further simplifies to

f = embcb (3.2)

which is the well-known Lambertian reflection. For more on the validity of the pho-
tometric assumptions see [16], [18], [66] and for calibration [19].

From the dichromatic reflection model, photometric invariants can be derived
(e.g. normalized RGB, hue). These invariants have the disadvantage that they are
unstable; normalized RGB is unstable near zero intensity and hue is undefined on the
black-white axis. The instabilities can be avoided by analyzing the RGB values in the
RGB-histogram [38] [51]. That proved to be rather difficult and slow since you need
a meaningful segmentation to generate a meaningful histogram, and a meaningful
histogram to get a good segmentation.
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(a) (b) (c)

Figure 3.1: (a) Shadow-shading direction ĉb, (b) specular direction ĉi, and (c) hue di-
rection b̂.

Instead of looking at the zeroth order structure (the RGB-values) we focus in
this chapter on the first order structure of the image. A straightforward extension
of the photometric invariance theory to first order filters can be obtained by taking
the derivative of the invariants. However, these filters would inherit the undesired
instabilities of the photometric invariants. Therefore we propose an alternative way to
arrive at photometric derivatives by analyzing the spatial derivative of the dichromatic
reflection model.

The spatial derivative of the dichromatic reflection model ( Eq. 3.1 ) gives the
photometric derivative structure of the image:

fx = embcb
x +

(

exmb + emb
x

)

cb +
(

emi
x + exmi

)

ci. (3.3)

Here, the subscript indicates spatial differentiation. Since we assume a known illu-
minant and neutral interface reflection, ci is independent of x. The derivative in
Eq. 3.3 is a summation of three weighted vectors, successively caused by body re-
flectance, shading-shadow and specular change. Further, we assume that shadows are
not significantly colored.

In fact, the direction of the shadow-shading changes (Fig. 3.1a) follows from
Eq. 3.2. In the absence of interface reflection, the direction of cb coincides with the
direction of f̂ = 1√

R2+G2+B2
(R,G,B)

T
. The hat is used to denote unit vectors. The

shadow-shading direction is the multiplication of two scalars denoting two different
physical phenomena. First, exmb indicates a change in intensity which corresponds
to a shadow edge. And emb

x is a change in the geometry coefficient which represents
a shading edge.

Another direction is the specular direction ci in which changes of the specular
geometry coefficient mi

x occur. In Fig. 3.1b, ci is depicted for the case of a white
light source for which ĉi = 1√

3
(1, 1, 1)T . The specular direction is multiplied by

two factors. Firstly, emi
x is a change of geometric coefficient caused by changes in

the angles between viewpoint, object and light source. Secondly, the term exmi

representing a shadow edge on top of a specular reflection.
Having the direction of two of the causes of an edge, we are able to construct a

third direction which is perpendicular to these two vectors (Fig. 3.1c). This direction,
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named hue direction b̂, is computed by the outer product:

b̂ =
f̂ × ĉi

∣

∣

∣̂f × ĉi
∣

∣

∣

. (3.4)

If f̂ and ĉi are parallel, we define b̂ to be the zero vector. Note that the hue direction
is not equal to the direction in which changes of the body reflectance occur, ĉb

x. It is
perpendicular to the two other causes of an edge. Hence, changes in the hue direction
can only be attributed to a body reflectance change.

In conclusion, changes in the reflection manifest themselves as edges in the image.
There are three causes for an edge in an image: an hue change, a shadow-shading edge
or a specular change. We indicated three directions: the shadow-shading direction,
the specular direction and the hue direction. These directions are the same as the
directions indicated by Klinker [38] for to use of image segmentation. We use these
direction for the construction of photometric invariant spatial derivatives.

3.3 Photometric Variants and Quasi-Invariants

In this section, the goal is to propose a new set of photometric variants and quasi-
invariants. To this end, the derivative of an image, fx = (Rx, Gx, Bx)T , is projected on
three directions found in the previous section. We will call these projections variants.
E.g. the projection of the derivative on the shadow-shading direction results in the
shadow-shading variant. By removing the variance from the derivative of the image,
we construct a complementary set of derivatives which we will call quasi-invariants.

The projection of the derivative on the shadow-shading direction is called the
shadow-shading variant and is defined as

Sx =
(

fx · f̂
)

f̂ . (3.5)

The dot indicates the vector inner product. The second f̂ indicates the direction of
the variant. The shadow-shading variant is the part of the derivative which could be
caused by shadow or shading. Due to correlation of the hue and specular direction
with the shadow-shading direction, part of Sx might be caused by changes in hue or
specular reflection.

What remains after subtraction of the variant is called the shadow-shading quasi-
invariant, indicated by superscript c,

Sc
x = fx − Sx. (3.6)

The quasi-invariant Sc
x consists of that part of the derivative which is not caused by

shadow-shading edges (Fig. 3.2b). Hence, only contains specular and hue edges.
The same reasoning can be applied to the specular direction and results in the

specular variant and the specular quasi-invariant

Ox =
(

fx · ĉi
)

ĉi ,
Oc

x = fx − Ox.
(3.7)
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(a) (b) (c) (d)

Figure 3.2: Various derivatives applied to Fig. 3.4a: a) color gradient (fx), b)
shadow-shading quasi-invariant (Sc

x), c) the specular quasi-invariant (Oc
x) , and d)

the specular-shadow-shading quasi-invariant (Hc
x).

The specular quasi-invariant is insensitive to highlight edges (Fig. 3.2c).
Finally, we can construct the shadow-shading-specular variant and quasi-invariant

by projecting the derivative on the hue direction

Hc
x =

(

fx · b̂
)

b̂ ,

Hx = fx − Hc
x.

(3.8)

Hc
x does not contain specular or shadow-shading edges (Fig. 3.2d).

3.4 Relations of Quasi-Invariants with Full Invari-

ants

In this section, the resemblances and differences are analyzed between quasi-invariants
and full invariants. A geometrical relation in RGB-space between the two is found
by investigating underlying color space transformations. Conclusions with respect to
stability are made. With stability it is meant that small changes in the RGB-cube do
not cause large jumps in the invariant space. Further, we discuss the characteristics
of quasi-invariants.

3.4.1 Spherical Color Space

An orthogonal transformation which has the shadow-shading direction as one of its
components is the spherical coordinate transformation. Transforming the RGB-color
space results in the spherical color space or rθϕ-color space. The transformations are,

r =
√

R2 + G2 + B2 = |f |
θ = arctan(G

R )

ϕ = arcsin
( √

R2+G2√
R2+G2+B2

)

. (3.9)

Since r is pointing in the shadow-shading direction, its derivative corresponds to Sx

rx =
RRx + GGx + BBx√

R2 + G2 + B2
= fx · f̂ = |Sx| . (3.10)
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(a) (b) (c) (d) (e) (f)

Figure 3.3: (a) Red-blue edge, with a decreasing intensity of the blue patch going in
the upward direction. Response of (b) normalized RGB derivative, and (c) shadow-
shading quasi-invariant (Sc

x). (d) Red-blue edge, with decreasing saturation going in
the upward direction. Response of (e) hue derivative (hx), and (f) specular-shadow-
shading quasi-invariant (Hc

x) (see also color plate C.5).

The quasi-invariant Sc
x is the derivative energy in the plane perpendicular to the

shadow-shading direction. The derivative in the θϕ-plane is given by

|Sc
x| =

√

(rϕx)
2

+ (r sinϕθx)
2

= r

√

(ϕx)
2

+ (sin ϕθx)
2

. (3.11)

To conserve the metric of RGB-space the angular derivatives are multiplied by their
corresponding scale factors which follow from the spherical transformation. For matte
surfaces both θ and ϕ are independent of mb (substitution of Eq. 3.2 in Eq. 3.9).
Hence, the part under the root is a shadow-shading invariant.

By means of the spherical coordinate transformation a relation between the
quasi-invariant and the full invariant is found. The difference between the quasi-

invariant |Sc
x| and the full invariant sx =

√

(ϕx)
2

+ (sinϕθx)
2

is the multiplication

with r which is the L2 norm for the intensity (see Eq. 3.9). In geometrical terms, the
derivative vector which remains after subtraction of the part in the shadow-shading
direction is not projected on the sphere to produce an invariant. This projection
introduces the instability of the full shadow-shading invariants for low intensities,

lim
r→0

sx does not exist

lim
r→0

|Sc
x| = 0.

(3.12)

The first limit follows from the non existence of the limit for both ϕx and θx at zero.
The second limit can be concluded from lim

r→0
rϕx = 0 and lim

r→0
rθx = 0. Concluding,

the multiplication of the full-invariant with |f | resolves the instability.
An example of the responses for the shadow-shading invariant and quasi-invariant

is given in Fig. 3.3. In Fig. 3.3a, a synthetic image of a red-blue edge is depicted.
The blue intensity decreases along the y-axis. Gaussian uncorrelated noise is added
to the RGB channels. In Fig. 3.3b the normalized RGB response is depicted and the
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instability for low intensities is clearly visible. For the shadow-shading quasi-invariant
(Fig. 3.3c), no instability occurs and the response just diminishes for low intensities.
Note that the instable region is particularly inconvenient because shadow-shading
edges tend to produce low-intensity areas.

3.4.2 Opponent Color Space

The orthonormal transformation which accompanies the specular variant is known as
the opponent color space. For a known illuminant ci = (α, β, γ)T it is given by

o1 = βR−αG√
α2+β2

o2 = αγR+βγG−(α2+β2)B√
(α2+β2+γ2)(α2+β2)

o3 = αR+βG+γB√
α2+β2+γ2

. (3.13)

The relations with the variant and its complement are |Ox| = o3x and |Oc
x| =

√

o12
x + o22

x.

3.4.3 The Hue Saturation Intensity Space

As discussed in section 3.3 the shadow-shading-specular quasi-invariant is both per-
pendicular to the shadow-shading direction and the specular direction. An orthogonal
transformation which satisfies this constraint is the hue-saturation-intensity transfor-
mation. It is actually a polar transformation on the opponent color axis o1 and o2.

h = arctan
(

o1
o2

)

s =
√

o12 + o22

i = o3
. (3.14)

The changes of h occur in the hue direction and hence the derivative in the hue-
direction is equal to the shadow-shading-specular quasi-invariant,

|Hc
x| = s · hx. (3.15)

The multiplication with the scale factor s follows from the fact that for polar trans-
formations the angular derivative is multiplied by the radius.

The hue, h, is a well known full shadow-shading-specular invariant. Eq. 3.15
provides a link between the derivative of the full invariant, hx and the quasi-invariant
|Hc

x|. A drawback of hue is its undefinedness for points on the black-white axis, i.e. for
small s. Therefore the derivative of hue is unbounded. In section 3.3, we derived the
quasi-invariant as a linear projection of the spatial derivative. For these projections,
it holds that 0 < |Hc

x| < |fx|, and hence the shadow-shading specular quasi-invariant
is bounded. It should be mentioned that small changes round the grey axis, result
in large changes of the direction or ’color’ of the derivative, e.g. from blue to red,
in both the quasi-invariant and the full invariant. However, the advantage of the
quasi-invariant is that the norm remains bounded for these cases. For example, in
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(a)

(b)

(c)

(d)

Figure 3.4: (a) Input image with superimposed two dotted lines which are plotted in
the images (c) and (d). (b) Edge classification result, with white object edges, black
shadow edges and light grey specular edges. (c),(d) The derivative strength along lines
indicated in (a) (see also color plate C.6).

Fig. 3.3d a red-blue edge is depicted. The blue patch becomes more achromatic along
the y-axis. The instability for grey values is clearly visible in Fig. 3.3e whereas in
Fig. 3.3f the response of the quasi-invariant remains stable.

3.4.4 Characteristics of Quasi-Invariants

Full invariants are invariant with respect to a physical photometric parameter like for
instance the geometric term mb in the case of normalized RGB. Hence, the first order
derivative response of such invariants does not contain any shadow-shading variation.
Our approach determines the direction in the RGB-cube in which shadow-shading
edges exhibit themselves. This direction is then used to compute the quasi-derivative
which shares with full invariants the property that shadow-shading edges are ignored.
However, the quasi-invariants is not invariant with respect to mb. For the shadow-
shading quasi-invariant subtraction from Eq. 3.3 of the part in the shadow-shading
direction cb results in

fx = emb
(

cb
x − cb

x · ĉb
)

(3.16)

which is clearly not invariant for mb and e. In a similar way also the specular-shadow-
shading quasi-invariant can be proven to be dependent on mb and e.

The dependency of the quasi-invariants on mb and e limits their applicability. They
cannot be used for applications where edge responses are compared under different
circumstances, such as content based image retrieval. However, they can be used
in applications which are based on a single frame, such as shadow-edge insensitive
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image segmentation, shadow-shading-specular independent corner detection and edge
classification.

A major advantage of the quasi-invariants is that their response to noise is inde-
pendent of the signal. In the case of additive uniform noise, the noise in the quasi
invariants is also additive and uniform, since it is a linear projection of the derivative
of the image. This means that the noise distortion is constant over the image. In
section 3.4, it was shown that the full invariants differ from the quasi-invariants by
scaling with a signal depended factor (the intensity or saturation). And hence their
noise response is also signal depended. Typically the shadow-shading full invariant
exhibits high noise distortion round low intensities while the shadow-shading-specular
full invariant has high noise dependency for points around the achromatic axis. This
is shown in Fig. 3.3. The uneven levels of noise throughout an image hinder further
processing.

A second advantage of photometric variants and quasi-invariants is that they are
expressed in the same units (i.e. being projections of the derivative they are in RGB-
value per pixel). This allows for a quantitative comparison of their responses. An
example is given in Fig. 3.4. Responses along two lines in the image are enlarged in
Fig. 3.4c and Fig. 3.4d. The line in Fig. 3.4c crosses two object edges and several
specular edges. It nicely shows that the specular-variant almost perfectly follows the
total derivative energy for the specular edges in the middle of the line. In Fig. 3.4d
a line is depicted which crosses two object edges and three shadow-shading edges.
Again the shadow-shading variant follows the gradient for the three shading edges. A
simple classification scheme results in Fig. 3.4b. Note that full-invariants cannot be
compared quantitatively because they have different units.

3.5 Experiments

We compare the performance of the quasi-invariants with the full invariants according
to the following criteria 1. stability, 2. edge displacement and 3. discriminative power.
For the improved stability a mathematical proof is given in chapter 3.4. Here, we will
test the invariants on edge displacement and discriminative power.

Since the specular quasi-invariant is well-known, and it does not counterpart a full
invariant, its performance is not investigated here. The experiments were performed
with normalized RGB, c1c2c3, l1l2l3, hue, Cw and Hw [16] [18]. The results for
the invariants c1c2c3, l1l2l3, Cw and Hw were similar or worse than the results for
normalized RGB and hue. Therefore, we have chosen normalized RGB and hue as
exemplary for the set of invariants, and compared them with the quasi-invariants. Im-
plementation details of the quasi-invariants can be found in [74]. For the experiments
a white light source ĉi = 1√

3
(1, 1, 1)T is used.

3.5.1 Edge Detection

First, we compare the edge detection performance of the quasi-invariants with the
invariants from literature. These results can also be seen as an indication of the
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Table 3.1: The displacement, ∆, and the percentage of missed edges, ε, for five dif-
ferent edge detectors. Gaussian noise of standard deviation 5, and 20 was added.

loss of discrimination due to invariance. Edge detection is performed between the
1012 different colors from the PANTONE [58] color system. Every one of the 1012
different RGB-values is combined with all other RGB-values, resulting in a total of
N = 1012 ∗ 1011/2 = 511566 edges of M = 25 pixels length. The edge position is
determined by computing the maximum response path of the derivative energy in a
region of 20 pixels around the actual edge. This results in an edge estimation which
is compared with the actual edge. We define two error measures. First, the average
pixel displacement ∆,

∆ =

∑

{xi,j ;|xi,j−x0|>0.5}
|xi,j − x0|

N · M (3.17)

in which xi,j is j-th edge pixel of the i-th edge. Because the actual edge is located
between two pixels displacements equal to .5 pixels are considered as a perfect match.
The second error measure is the percentage of missed edges, ε. An edge was classified
missed as the variation over one edge,

var(i) =
1

M

M
∑

j=1

∣

∣

∣

∣

∣

xi,j −
1

M

∑

k

xi,k

∣

∣

∣

∣

∣

(3.18)

is larger than 1 pixel. For the Gaussian derivative, a scale σ = 1 is chosen. The
experiments were performed with uncorrelated Gaussian noise of standard deviation
5, and 20.

The results are depicted in Table 3.1. For both cases, the shadow-shading and
shadow-shading-specular edges, the quasi-invariants substantially outperform the in-
variants. For comparison, the results without invariance based on the RGB gradient,
|fx|, are inserted. Obviously, the RGB gradient has the best discriminative power.
However, it will also find many edges which are caused due to scene incidental events.

To provide more insight in what kind of edges were still detected, we computed
the average Euclidean RGB difference of the missed edges for the case with Gaussian
noise with a standard deviation of 5. With dij = |fi − fj | the Euclidean distance
between patch i and j. For the RGB gradient-based method, we obtained an average
distance of d = 4.6, for the shadow-shading quasi-invariant d = 86 and d = 109 for
the shadow-shading-specular invariant.
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(a) (b) (c) (d)

Figure 3.5: (a) Input image and corner detector results based on (b) RGB gradient
(fx), (c) shadow-shading quasi-invariant (Sc

x), and (d) shadow-shading-specular quasi-
invariant (Hc

x) (see also color plate C.7).

3.5.2 Photometric invariant corner detection

Derivatives based on full photometric invariants are, due to their instability, unreli-
able input for geometrical operations such as photometric invariant corner detection,
orientation estimation, curvature estimation, etc. Quasi-invariants, on the other hand
are expected to be more stable in combination with geometrical operations. We used
the following straightforward extension of the Harris corner detector [27] for color
images

Hf = fT
x fx fT

y fy − fT
x fy

2 − k(fT
x fx + fT

y fy)2. (3.19)

The overline indicates a gaussian averaging window. The corner detection results are
given in Fig. 3.5. The shadow-shading quasi-invariant detector does not find shadow-
shading corners whereas the shadow-shading-specular quasi-invariant also ignores the
specular corners.

In Fig. 3.6, the 30 most prominent Harris corners are detected for two real world
images (Corel gallery). The detected points can be used as interest points for object
recognition [64]. Note that the images break several of the assumptions of the dichro-
matic reflection model (Eq. 3.1). They do not have a known illuminant, nor are they
taken with a linear acquisition system. The results for the full invariants are domi-
nated by their instabilities. The shadow-shading full invariant is unstable in the low
intensity areas and consequently finds most of the interest points in this area. The
shadow-shading specular full invariant is unstable along the whole grey axis, which
leads to false corners in grey areas. The RGB gradient method focusses on large
RGB value changes which mostly coincide with light-dark transition which are rarely
the most discriminative points. It is apparent that the quasi-invariants (Figs. 3.6d,h)
suppress unwanted photometric variation and focus on body reflectance changes only.

3.6 Conclusions

In this chapter we proposed a set of quasi-invariant derivatives. These derivative
filters are combined with derivative-based feature detectors to perform photometric
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.6: (a), (e) Input images. Corner detection based on (b) RGB gradient (fx),
(c) normalized RGB, (d) shadow-shading quasi-invariant (Sc

x), (f) RGB gradient
(fx), (g) hue full invariant (hx), and (h) shadow-shading quasi-invariant (Hc

x) (see
also color plate C.8).

invariant feature detection. Experiments show that they significantly outperform
feature detection based on full invariants on both stability and discriminative power.



Chapter 4

Curvature Estimation

in Oriented Patterns

using Curvilinear Models

applied to

Gradient Vector Fields ∗

4.1 Introduction

Reliable estimation of local features in digitized images is of great importance for
many image processing tasks (segmentation, analysis, and classification). Depending
on the class of images under investigation, knowledge of different features is desired.
One such class of images is defined by Kass and Witkin [37] as oriented patterns:
patterns that exhibit a dominant local orientation. Examples are seismic, acoustic,
wood grain, interference patterns, and fingerprint images. Important features for
these images are estimates of local anisotropy, orientation, curvature and scale.

The structure tensor yields a robust estimator for local orientation [7] [23] [37] [87]
based on a local gradient vector field. This estimator locally models the images as
translation invariant strokes. In addition to orientation estimation this method also
yields an anisotropy measure indicating the resemblance of the local area to a trans-
lation invariant model. This measure can also be interpreted as a confidence measure
of the estimated orientation. Both a lack of smoothness (e.g. caused by noise) and
deviations from the translation invariant model (e.g. curved oriented patterns) are
responsible for a decrease of this confidence measure. To distinguish between the two

∗This research has been performed in the Pattern Recognition Group at the Faculty of Applied
Sciences of the Delft University of Technology and has been Published in IEEE Transactions on
Pattern Analysis and Machine Intelligence [79]
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possible causes, we proposed a parabolic transformation, which optimizes the trans-
lation invariance after transformation [90]. This method yields a curvature estimate
for curved oriented patterns as a by-product. A shortcoming of this method is that
the proposed transformation is not orthonormal and therefore it lacks conservation
of gradient energy. This does not allow direct comparison of the confidence values
of different transformations. In this paper we propose a method to investigate the
resemblance of a local pattern of 2-D oriented pattern to a certain model function
(e.g. circular, parabolic). The model is represented by a parameterized transfor-
mation function of the isophotes. The method assures the conservation of gradient
energy, allowing us to compare confidence measures of different transformations, and
especially of a parameterized transformation for different parameter values. Like in
[90], solving the parameter for best confidence yields a closed-form estimate of the
additional free parameter, e.g. local curvature. We propose two curvilinear models, a
parabolic and a circular model, for the characterization of curved oriented patterns.
When the resemblance between a model and a local image is high, the corresponding
model parameters, orientation and curvature, yield a reliable description of the local
image. The method yields features with a corresponding confidence value. All these
estimates are local and can be represented as feature maps.

Estimation of the curvature in oriented patterns is not trivial. Worring [94] pre-
sented an extensive comparison between curvature estimators applied to segmented
data for which the position and ordering of points along the contour have to be known.
For noisy oriented patterns segmentation fails, making these methods useless. The
isophotes (tangential) curvature (the second derivative along the isophotes divided
by the gradient magnitude) is segmentation-free [86][89], but also fails on these im-
ages. There are three reasons for this [90]: a) the gradient is zero on ridges and in
valleys; b) Increasing the regularization scale of directional derivatives suppresses the
oriented pattern and reduces the signal-to-noise ratio; c) opposite sides of a ridge (or
valley) yield curvatures of opposite sign, which cancel out after averaging. The only
two methods which do yield a curvature estimate for oriented patterns are either very
computationally demanding [83] or are not accompanied by a confidence measure,
which makes them hard to rely on [88].

The proposed method resembles a method for the detection of complex symmetries
as presented by Bign [6][7][24]. He characterizes symmetries by (coordinate-) trans-
formation functions, which transform symmetric patterns into translation invariant
patterns. The success of such a transformation is determined by the confidence mea-
sure of the structure tensor applied to the transformed image. A high confidence
value is an indicator for the presence of the corresponding symmetry. Bign’s method
is an extension of the generalized Hough transform. Detection of a symmetry pat-
tern involves accumulation of evidence by voting. Bign’s symmetry detector requires
two orthonormal transformation functions. It measures the resemblance of the local
differential field to two perpendicular differential fields (indicating the symmetry),
whereas our method looks at the resemblance of the local differential field to only
one differential field (representing the shape of the isophotes). This difference allows
us to estimate model parameters by optimizing the resemblance between the actual
differential field and a model differential field in a closed-form solution, i.e., omitting
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a time consuming voting scheme. This is not possible with the symmetry method
since neither one of the two differential fields is preferred. The requirement for two
orthonormal transformation functions poses an unnecessary limitation to the sym-
metries. For example, such a set of functions does not exist for the parabolic model
we propose, i.e. parabolic isophotes along a linearly increasing symmetry axis. We
extend his method by noting that only the existence of the differential fields of the
two transformation functions is essential.

4.2 Oriented Patterns

A oriented pattern m (x, y) can be written as a real one dimensional function g of a
model function u

m (x, y) = g (u (x, y,a)) . (4.1)

The model function u (x, y,a) describes the shape of the isophotes and a contains local
isophotes parameters such as orientation and curvature. Consequently, the gradient
(differential field) of m

∇m =
dg

du
∇u (4.2)

is a dg
du weighted version of the gradient of u. In oriented patterns we distinguish

between two perpendicular orientations; along the isophotes (tangent), and along the
gradient. Note that orientation is defined on the interval [0, π〉. Consequently, vectors
in opposite directions have the same orientation.

Consider the function f (x, y) representing a local image (window) and a model
function u (x, y,a). It is of interest to what extent f (x, y) is described by the model
function u (x, y,a). This is measured by decomposing the derivative energy of f (x, y)
into two contributions, one parallel and one perpendicular to the normalized differ-
ential field of u (x, y,a). This results in the following energies

Ef (a) =
∫ ∫

(

∇f · ∇u(a)
‖∇u(a)‖

)2

dx dy

Er(a) =
∫ ∫

(

∇f · (∇u(a))
⊥

‖∇u(a)‖

)2

dx dy
(4.3)

where Ef (a) denotes the fit energy and Er(a) the residual energy. The subscript ⊥
indicates a rotation of 90◦ of the vector and the integrals represent the averaging over
the local image. A quality measure of the fit can be found by comparing the fit energy
with the residual energy. Since no a-priori knowledge exists to interpret the energy
difference between the fit and the residual energy, we normalize the difference with
the total gradient energy to obtain the following quality measure c (a)

c (a) =
Ef (a) − Er (a)

Ef (a) + Er (a)
− 1 ≤ c ≤ 1. (4.4)

The value of c (a) varies from −1 for a pattern of which the isophotes are exactly
perpendicular to those of the model function u (x, y,a) and +1 for a pattern which
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is exactly described by the model function. The isotropic noise energy is distributed
equally between the fit and the residual energy.

More important than the quality measure for an arbitrary a is to know which a
maximizes the quality function c, i.e. maximizes Ef and minimizes Er. The vector
a contains model parameters which describe local features. Therefore optimizing the
confidence function c corresponds to feature estimation. Furthermore, the quality
measure c (a) informs us about the success of the fit and can be seen as a confidence
measure of the estimated features. Besides comparing confidence measures of the same
model function, it is also possible to compare confidence measures of different model
functions. Note that the normalization of the confidence measures is independent of
the model function. By comparing optimized confidence functions of various models
one can find out which model describes the local pattern best.

Usually the complexity of the confidence function does not allow a closed-form
solution of the optimization criterion. The straight model is an exception. In the
case of curvilinear models, we avoid costly (iterative) optimization procedures by
considering approximate confidence functions, which do allow closed-form solutions.

4.3 Straight-Oriented Patterns

Locally, many oriented patterns can be characterized by a straight model. For such
a pattern the model function u (x, y,a) is given by

u (x, y, φ) = x cos φ + y sin φ (4.5)

with φ the orientation perpendicular to the model isophotes. Substituting this in Eq.
(3) yields

Ef (φ) = 1
2

(

f2
x + f2

y

)

+ 1
2

(

f2
x − f2

y

)

cos 2φ + 1
22fxfy sin 2φ. (4.6)

A bar (.) denotes an averaged quantity and will from now on replace the integrals
responsible for averaging over a local image. The confidence value c (φ) is

c (φ) =
1

f2
x + f2

y

((

f2
x − f2

y

)

cos 2φ + 2fxfy sin 2φ
)

(4.7)

c (φ) can be maximized as a function of the orientation φ. This yields the following
(gradient-based) orientation estimator[8][23] [37][87]

φopt = 1
2 arctan

2fxfy

f2
x − f2

y

(4.8)

with confidence value c (φopt)

c (φopt) =
d2

g2
where d4 = f2

x − f2
y

2
+ 2fxfy

2
. (4.9)
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This confidence measure can also be interpreted as a measure for translation invariance
and shows an intuitive dependency to the pattern orientation φopt.

c (φ) =
d2
(

cos2 (φ − φopt) − sin2 (φ − φopt)
)

g2
= 1

2c (φopt) (1 + cos (2 (φ − φopt))) .

(4.10)
The maximum of the confidence measure c (φopt) reduces due to noise in the local
image f . For a linear pattern p distorted by additive uncorrelated noise n (f = p+n)
the confidence value c (φopt) is

c (φopt) =
d2

‖∇f‖2
=

d2

‖∇p + ∇n‖2
=

d2

‖∇p‖2

‖∇p‖2

‖∇p‖2
+ ‖∇n‖2

. (4.11)

Note that the gradient noise energy is divided equally over Ef and Er. Therefore
the numerator of c is unaffected by noise. Noise increases the total gradient energy
(denominator of c), which lowers the confidence value c (φopt). Another reason for a
lower confidence value is a deviation between the local image and the model function.
For instance when curved lines occur, then curvature will contribute to Er. In the
next section we will extend the model to include curved patterns.

4.4 Curved Oriented Patterns

We present two model functions, which locally model curved oriented patterns. A
parabolic model

u (x, y, φ, κ) = 1
2κw2 − v (4.12)

and a concentric circle model

u (x, y, φ, κ) =

√

κ2w2 + (1 − κv)
2

(4.13)

in which κ is the curvature. The Gauge coordinates v, w are obtained by

v = x cos φ + y sinφ w = −x sin φ + y cos φ. (4.14)

Here we discuss the parabolic approximation. For the circular approximation we refer
to appendix A. Using the parabolic model function and Eq. (3) the following energies
are obtained

Ef (φ, κ) =
(

κ2w2f2
w−2κwfwfv+f2

v

1+κ2w2

)

Er (φ, κ) =
(

κ2w2f2
v+2κwfvfw+f2

w

1+κ2w2

) (4.15)

where fv and fw are the derivatives in respectively the v and w direction. Finding the
curvature and orientation that maximize the confidence function requires a search in
φ, κ-space. In this paper we shall not further investigate this method due to its high
computational demands. Instead we propose a way to approximate the confidence
function, allowing a fast closed-form solution.
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An approximation to the orientation φ can be obtained by looking at the axis of
minimal translation invariance for parabolic and circular patterns. In the case of a
circular pattern this is the v-axis. For a parabolic pattern it depends on the curvature
and the window size used. For small curvatures (i.e. compared to the window size)
the minimal translation invariant axis is equal to the v-axis. Increasing the curvature
the axis of minimal translation invariance jumps to the w-axis. Therefore an approx-
imation of the orientation needed to determine the v and w-axes in the Eq. (15) can
be computed with Eq. (8). After substituting the orientation, the resulting equations
only depend on the curvature. Iterative maximization of the confidence function in
κ-space is still time-consuming. We propose to approximate this maximum by using
locally adapted weighting. The weighting function of Ef and Er (denoted by the bar

(.) ) is on its turn weighted by
(

1 + κ2w2
)

after which we normalize for this weighting.
This mathematical trick has a high resemblance to normalized convolution [39]. It
results in

Êf (κ) =
κ2w2f2

w−2κwfwfv+f2
v

1+κ2w2

Êr(κ) =
κ2w2f2

v+2κwfwfv+f2
w

1+κ2w2
.

(4.16)

A hat (̂. ) above a quantity indicates an approximation. Since the fit energy Ef might
be a function of the coordinate w, as is the adapted weighting function, optimization
lead to a false curvature estimate. Therefore minimization of the residual energy Er

is used to find the following closed-form curvature estimate

κ̂ =
w2f2

v − w2 · f2
w −

√

4w2 · wfwfv

2
+
(

−w2f2
v + w2 · f2

w

)2

2w2 · wfwfv

. (4.17)

The confidence measure can now be computed in two different ways. The confidence
measure c (φ, κ) has its maximum at (φopt, κopt). To avoid an iterative search for

this optimum one can compute c(φ̂, κ̂) by substituting φ̂ and κ̂ in Eqs (15) and (4).

Note that estimates φ̂ and κ̂ do not have to be equal to the values of φ and κ that
optimize the confidence function. However, computing c(φ̂, κ̂) is still expensive. A
significant speed-up can be obtained by approximating the confidence measure using
the approximate energies of Eq. (16).

ĉ (φ, κ) =
Êf (φ, κ) − Êr (φ, κ)

Êf (φ, κ) + Êr (φ, κ)
. (4.18)

Again, one can avoid an iterative search by substituting φ̂ and κ̂ in Eq. (18), which

yield ĉ(φ̂, κ̂). The curvature estimator in Eq. (17) is the tangential or isophote cur-
vature. The normal (or gradient flow line) curvature can be computed by exchanging
the v and w coordinates in Eqs (12) and (13).
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4.5 Implementation

Direct computation of the curvature and the confidence measure is a space-variant op-
eration. This yields a high computational demand. Fortunately, Eqs (16) to (18) can
be calculated with global convolutions, which can be implemented by multiplication in
the Fourier-domain. This yields a substantial reduction in computational complexity.
The derivatives fx and fy are implemented as regularized derivative filters.

fx ≡ f (x, y) ⊗ ∂g (x, y;σg)

∂x

F↔ jωxf̃ (ωx, ωy) g̃ (ωx, ωy;σg) (4.19)

with f̃ the Fourier transform of f and g (x, y;σg) a Gaussian regularization function
of scale σg

g(x, y;σg) =
1

2πσ2
g

e−(x2+y2)/2σ2

g
F↔ g̃(ωx, ωy;σg) = e−

1
2 (ω2

x+ω2

y)σ2

g . (4.20)

The terms of the curvature estimator and the confidence measure, Eqs (16)-(17) , are
expanded in Appendix B (the circular model is treated in appendix A). The remaining
terms xpyqfr

xfs
y are conveniently calculated as multiplications in the Fourier domain

xpyqfr
xfs

y = u (p, q, σa) ⊗ fr
xfs

y

F↔ ũ(p, q, σa)F
{

fr
xfs

y

}

. (4.21)

For the window function we choose a Gaussian of scale σa. The Fourier transform of
the filter u is

u (p, q, σa) ≡ xpyqg(x, y;σa)
F↔ ũ(p, q;σt) ≡ jp+q ∂p+q g̃(ωx, ωy;σa)

∂ωp
x∂ωq

η
. (4.22)

Due to the high frequency character of oriented patterns σg should be kept small, i.e.
tuned to the frequency characteristics of the cross-section of a line. Noise suppression
is accomplished by averaging all terms by Gaussian window (size σa), i.e. the size of
the curvilinear model.

4.6 Experiments

In this section the proposed algorithms are tested on synthetic and real-world images.
The feature extraction, which we presented, is based upon finding a maximum of
the confidence measure in parameter space c (a). The curvature of oriented patterns
corresponds to the position of the maximum in c (κ, φ). To avoid searching κ, φ-space

the approximations φ̂ and κ̂ are proposed. With these an approximated confidence
measure ĉ and the exact confidence measure c may be computed. The goal of the
experiments is to investigate the performance of these approximations as a function of
the curvature. Also the robustness with respect to the noise is checked. The tests are

performed on a concentric circle image f(x, y) = sin
(

√

x2 + y2 + ϕ
)

+ n (see Fig. 1)

in which n = N
(

0, σ2
n

)

and ϕ a phase-term set randomly for every noise-realization.
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Figure 4.1: Confidence measure c(φ̂, κ̂) of circular, parabolic, and straight line models
on a noise-free pattern of concentric circles.

For the signal-to-noise ratio we use SNR = 10 log
(

h2
/

σ2
n

)

where h is the contrast
difference and σn the standard deviation of the noise. Be aware that the proposed
algorithms are based on the gradient energy of the local image. Thus an increase of
the pattern frequency will usually result in a higher SNR (gradient energy vs. filtered
noise variance) and therefore a better performance. All experiments on the concentric
circle image are based on 100 measurements. Unless mentioned otherwise the sigma
sizes are σg = 1.0 and σa = 5.0.

4.6.1 Confidence measure as selection criterion

The importance of choosing the right model is illustrated in Fig. 1, which shows
the confidence measures of the circular, parabolic and the straight model applied
to a noise-free pattern of concentric circles. It is clear that for high curvatures the
deviation of the straight and the parabolic model form the circle pattern results in a
significantly lower value of the confidence measure.

4.6.2 Bias of the Actual Confidence Measure

To investigate to what extent the optimum of the confidence function in κ, φ-space is
found, we compare the average confidence measure of the circular model applied to
curved patterns with the average confidence measure of a straight model applied to
straight pattern. Both images have identical signal-to-noise ratios. The confidence
measure c(φ, κ) of a curvilinear model can be slightly higher than the confidence
measure of a straight model. This slight increase is caused by the fact that the
curved model allows for two parameters to adjust to the noise.

The average confidence measure c(φ̂, κ̂) of the circular model applied to the con-
centric circles is depicted in Fig. 2 for three SNR’s (20dB, 10dB, 6dB). It clearly

shows that for small radii the average confidence measure c(φ̂, κ̂) decreases. This is
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caused by an increasing discrepancy between the approximated (φ̂, κ̂) and the opti-
mal (φopt, κopt) for small radii. Note, c(φopt, κopt) does not decrease for small radii.
Fig. 2b indicates the variation around the average confidence measure for the straight
model. Increasing the window size (local image) reduces the variation in exchange of

a further decrease of c(φ̂, κ̂) for small radii.

4.6.3 Approximation Error of the Confidence Measure

In section 4 we presented two methods for computing the confidence measure, the
actual confidence measure c(φ̂, κ̂) and an approximation ĉ(φ̂, κ̂). In Fig. 3 the rms
(root-mean-square) error due to this approximation is depicted for the circular and
the parabolic model. For both models these errors are small. Only for high curvatures
(small radii) it may be worthwhile to compute the actual confidence measure.

4.6.4 Robustness of the Curvature Estimator

It is important to test the robustness of the curvature estimation. In Fig. 4, the
noise sensitivity of the parabolic and circular curvature estimators are depicted. Both
models were applied to the concentric circles. The coefficient-of-variation (CV = σ/µ)
of both models are similar for the middle and high SNR’s, but the parabolic models
performs better for low SNR’s. Considering the advantage of the circular curvature
estimator due to the exact match between the model and the pattern, we show that
parabolic curvature estimator suffers less from the approximations. The parabolic

(a) (b)

Figure 4.2: (a) Average confidence measure c(φ̂, κ̂) for the circular model as a function
of the radius for three different SNRs (top to bottom: 20 dB, 10 dB, 6 dB). The

measure c(φ̂, κ̂) yields a small bias for small radii. The horizontal lines indicate the
average confidence measure for the straight-line model for the corresponding SNR.
(b) Probability density functions of the confidence measures for the straight-oriented
patterns for the three different SNRs (top to bottom: 20 dB, 10 dB, 6 dB).
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(a) (b)

Figure 4.3: Rms error between the actual confidence measure and its approximation
as a functioin of the radius. (a) Approximate parabolic model applied to concentric
circle pattern of various SNR (top-to-bottom: 6dB, 10 dB, 20 dB). (b) Approximate
circular model applied to concentric circle patterns of various SNR (top-to-bottom:
6dB, 10 dB, 20 dB).

curvature estimator performs at least as well over a wide range of curvatures. Only
for high curvatures the circular model can take advantage of the exact match. In
practice, one can compute the curvature corresponding to both models. The one
with the highest confidence measure is preferred because its model yields a better
description of the data.

4.6.5 Application of Curvilinear Models to Real-World Data Sets

In Fig. 5 an interference pattern, together with the curvature and confidence esti-
mation for both the parabolic and circular model, is depicted. As expected, the
parabolic model fails in the middle of the ellipses as indicated by an abrupt drop
of the confidence measure. The circular confidence measure hardly decreases for the
circles at the top and the bottom of the image. For the flatter ellipses on the left and
the right the mismatch between the model and the pattern is slightly larger. In the
difference image between the circular and parabolic confidence measures, the lighter
areas indicate a better description of the circular model whereas in the darker areas
the parabolic model yields a better fit. The slightly darker lines denote an almost
perfect parabolic line pattern.

The estimated local curvature of a fingerprint and a CT cross-section of a tree-
trunk are depicted in Fig. 6. Both curvilinear models produced similar results. The
dark lines in the logarithmically stretched curvature images denote locally straight
patterns. Both peaks in the fingerprints curvature correspond to important minutia
for fingerprint recognition [35] [49]. The curvature estimation can be used to improve
(to prevent jumping the rails) the ridge tracking [35], which is already based on orien-
tation estimation. The high confidence measures (white areas in confidence images)
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(a) (b)

(c) (d)

Figure 4.4: Curvature estimators using curvilinear models: black line = parabolic
model, gray line = circular model. (a), (b) and (c) Coefficicient-of-variation (CV) for
the parabolic and circular model-based curvature estimators for different SNR (20 dB,
10 dB, 6 dB). (d) Bias of parabolic and circular model based curvature estimators
(SNR = 10 dB) (thick gray line indicates the noise-free bias of curvature using the
parabolic model).

indicate a perfect fit of the model and a reliable curvature estimate.

4.7 Conclusions

In this paper we present a method to compare a local image with a model function.
A quality measure indicates the resemblance between the local image and the model
function. Feature extraction is obtained by optimization of the quality function as a
function of the parameters, which represent the feature. The quality function is inter-
preted as a confidence measure for the measured features. We propose two curvilinear
models to describe curved oriented patterns. To avoid searching φ, κ-space we propose
closed-form solution for approximations to the actual parameters of the curvilinear
models φ̂ and κ̂. Instead of the exact confidence measure c(φ̂, κ̂) an approximation

ĉ(φ̂, κ̂) can be computed resulting in a huge reduction in computational demand. We
demonstrate that these approximations yield good results for almost all curvatures.
Only for the highest curvatures one might decide to compute c(φ̂, κ̂) , or (even more
computationally demanding) to iterate in φ, κ-space for c(φopt, κopt).
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: (a) Interference pattern of vibrating plate. The superimposed circle denotes
the size of the curvilinear model. (b) and (c) Confidence measures for, respectively,
the circular and parabolic model (range [0, 1]) computed with σg = 1.0 and σa =
5.0. (d) Difference in confidence measure between circular and parabolic model (range
[−0.5, 0.5]). (e),(f) Estimated curvatures κ̂ for respectively the circular and parabolic
model (log stretched).

4.8 Appendix A

For a concentric circle model, u (x, y, φ, κ) =

√

κ2w2 + (1 − κv)
2

, the fit and residual
energies are

Ef (κ) =
(

(1−κv)2f2
v−2κw(1−κv)fvfw+κ2w2f2

w

(1−κv)2+κ2w2

)

Er (κ) =
(

(1−κv)2f2
w+2κw(1−κv)fvfw+κ2w2f2

v

(1−κv)2+κ2w2

)

.
(4.23)

To obtain a closed-form solution for the curvature and the confidence measure, the

local energies are computed inside a
(

κ2w2 + (1 − κv)
2
)

-weighted space-variant win-

dow. This yields

Êf =
κ2(v2f2

v+2vwfvfw+w2f2
w)+2κ(−vf2

v−wfvfw)+f2
v

1−2κv+κ2(v2+w2)
≡ Aκ2+2Bκ+C

1+Dκ2

Êr =
κ2(v2f2

w−2vwfvfw+w2f2
v)+2κ(−vf2

w+wfvfw)+f2
w

1−2κv+κ2(v2+w2)
≡ Eκ2+2Fκ+G

1+Dκ2

(4.24)
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: (a) Fingerprint image. (b) CT image of trunk. (c),(d) The estimated
curvature κ̂ using parabolic model (log stretch) at σg = 1.0 and σa = 5.0. (e) and (f)
The confidence measure of the parabolic model (range [0, 1]).

with v = 0. The minimization of the residual energy yields an approximation of the
curvature

κ̂ =
E − GD −

√

4F 2D + (−E + GD)
2

2FD
. (4.25)

The terms of Êf and Êr are expanded with Eq. (14) and

fv = fx cos φ + fy sinφ fw = −fx sin φ + fy cosφ. (4.26)

This results in















































A = x2f2
x + 2xyfxfy + y2f2

y

B = −
(

xf2
x + yfxfy

)

cos φ −
(

xfxfy + yf2
y

)

sin φ

C = f2
x cos2 φ + 2fxfy cos φ sin φ + f2

y sin2 φ
D = 2σ2

a

E = x2f2
y − 2xyfxfy + y2f2

x

F =
(

yfxfy − xf2
y

)

cos φ +
(

xfxfy − yf2
x

)

sin φ

G = f2
y cos2 φ − 2fxfy cos φ sin φ + f2

x sin2 φ

(4.27)
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The averaged terms can be computed as global convolutions (see section on Imple-
mentation). The approximated confidence function is computed with

ĉ =
κ2(A − E) + 2κ(B − F ) + (C − G)

κ2(A + E) + 2κ(B + F ) + (C + G)
. (4.28)

4.9 Appendix B

The terms for the parabolic confidence measure (Eq (16)) and curvature estimator
(Eq. (17)) are































































w2f2
w = −2

(

xyf2
y + y2fxfy

)

cos3 φ sinφ +
(

x2f2
y + 4xyfxfy + y2f2

x

)

cos2 φ sin2 φ

+2
(

−x2fxfy − xyf2
x

)

cosφ sin3 φ + x2f2
x sin4 φ + y2f2

y cos4 φ

w2f2
v = −2

(

xyf2
x − y2fxfy

)

cos3 φ sin φ +
(

x2f2
x − 4xyfxfy + y2f2

y

)

cos2 φ sin2 φ

+2
(

x2fxfy − 2xyf2
y

)

cos φ sin3 φ + x2f2
y sin4 φ + y2f2

x cos4 φ

wfvfw = yfxfy cos3 φ +
(

−xfxfy − y
(

f2
x − f2

y

)

)

cos2 φ sinφ

+
(

x
(

f2
x − f2

y

)

− yfxfy

)

cosφ sin2 φ + xfxfy sin3 φ

w2 = σ2
a

(4.29)
for f2

v and f2
w see term C and G in appendix A.



Chapter 5

Robust Photometric Invariant

Features from the Color

Tensor ∗

5.1 Introduction

Differential-based features such as edges, corners, and salient points, are used abun-
dantly in a variety of applications such as matching, object recognition, and object
tracking [26], [64], [67]. We distinguish between feature detection and feature extrac-
tion. Feature detection aims at finding the position of features in the images, whereas
for feature extraction, a position in the images is described by a set of features, which
characterize the local neighborhood. Although the majority of images is recorded in
color format nowadays, computer vision research is still mostly restricted restricted to
luminance-based feature detection and extraction. In this chapter we focus on color
information to detect and extract features.

In the basic approach to color images the gradient is computed from the derivatives
of the separate channels. The derivatives of a single edge can point in opposing
directions for the separate channels. DiZenzo [11] argues that a simple summation of
the derivatives ignores the correlation between the channels. This also happens by
converting the color image to luminance values. In the case of isoluminance of adjacent
color regions it will lead to cancellation of the edge. As a solution to the opposing
vector problem, DiZenzo proposes the color tensor for color gradient computation.

The same problem as occurs for color image derivatives, exists for oriented pat-
terns (e.g. fingerprint images). Due to the high frequency nature of oriented patterns
opposing derivative vectors occur in a small neighborhood. The same solution which
was found for color image features, is used to compute features for oriented patterns.
Kass and Witkin [37] derived orientation estimation from the structure tensor. Adap-
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tations of the tensor lead to a variety of features, such as circle detectors and curvature
estimation [6], [8], [24], [79]. Lee and Medioni [44] apply the structure tensor within
the context of perceptual grouping.

A step forward in the understanding of color images was made by the dichromatic
reflection model by Shafer [66]. The model describes how photometric changes, such
as shadows and specularities, affect the RGB-values. On the basis of this model,
others provided algorithms invariant to various photometric events such as shadows
and specularities [17], [38]. The extension to differential photometric invariance was
investigated by Geusebroek et al. [16]. In chapter 3 we introduced the photometric
quasi-invariants which are a set of photometric invariant derivatives with better noise
and stability characteristics compared to existing photometric invariants. Combining
photometric quasi-invariants with derivative based feature detectors leads to features
which can identify various physical causes, e.g. shadow corners and object corners. A
drawback of the quasi-invariants is that they can only be applied for feature detection.
In the case of feature extraction, where the values of multiple frames are compared,
full invariance is necessary.

We propose a framework to combine the differential based-features with the pho-
tometric invariance theory. The framework is designed according to the following
criteria: 1. features must target the photometric variation needed for their applica-
tion. To achieve that accidental physical events, such as shadows and specularities,
will not influence results. 2. features must be robust against noise and should not con-
tain instabilities. Especially for the photometric invariant features instabilities must
be dissolved. 3. physically meaningful features should be independent of the acciden-
tal choice of the color coordinate frame. Next to satisfying the criteria the framework
should also be generally applicable to existing features. To meet these criteria we start
from the observation that tensors are well-suited to combine first order derivatives for
color images. The first contribution is a novel framework that combines tensor-based
features with photometric derivatives for photometric invariant feature detection and
extraction. The second contribution is that for feature extraction applications, for
which quasi-invariants are unsuited, we propose a new uncertainty measure which ro-
bustifies the feature extraction. The third contribution is that the proposed features
are proven to be invariant with respect to color coordinate transformations.

The chapter is organized as follows. In section 2, the prerequisites for color feature
detection from tensors are discussed. In section 3, an uncertainty measure is proposed.
Based on this uncertainty measure robust photometric feature extraction is derived.
In section 4, a overview of tensor-based features is given. Section 5, provides several
experiments and section 6 contains the concluding remarks.

5.2 Tensor-Based Features for Color Images

The extension of differential-based operations to color images can be done in various
ways. The main challenge to color feature detection is how to transform the 3D-color
differential structure to a representation of the presence of a feature. In this section we
ensure that the transformation agrees with the criteria mentioned in the introduction.
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Figure 5.1: (a) The subspace of measured light in the Hilbert space of possible spec-
tra. (b) The RGB coordinate system and an alternative orthonormal color coordinate
system which spans the same subspace (see also color plate C.9).

In section 5.2.1 the invariance with respect to color coordinate transformation is
discussed. In section 5.2.2 the transformation is written in tensor mathematics which
links it with a set of tensor based features, thereby ensuring generality. In section
5.2.3 the photometric invariance of the transformation is discussed.

5.2.1 Invariance to Color Coordinate Transformations

From a physical point of view only features make sense which are invariant to rotation
of the coordinate axes. This starting point has been applied in the design of image
geometry features, resulting in, for example, gradient and Laplace operators [14]. For
the design of physically meaningful color features not only the invariance with respect
to spatial coordinate changes is desired but also the invariance with respect to color
coordinate systems rotations. Features based on different measurement devices which
measure the same spectral space should yield the same results.

For color images, values are represented in the RGB coordinate system. In fact,
the infinite-dimensional Hilbert space is sampled with three probes which results in
the red, green and blue channels (see Fig. 5.1). For operations on the color coordi-
nate system to be physically meaningful they should be independent of orthonormal
transformation of the three axes in Hilbert space. An example of an orthonormal
color coordinate system is the opponent color space (see Fig. 5.1b). The opponent
color space spans the same subspace as the subspace defined by the RGB-axes and
hence both subspaces should yield the same features.

5.2.2 The Color Tensor

Simply summing differential structure of various color channels may result in can-
cellation even when evident structure exists in the image [11]. Rather than adding
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the direction information (defined on [0, 2π〉) of the channels, it is more appropriate
to sum the orientation information (defined on [0, π〉). Such a method is provided
by tensor mathematics for which vectors in opposite directions reinforce one another.
Tensors describe the local orientation rather than the direction. More precisely, the
tensor of a vector and its 180◦ rotated counterpart vector are equal. It is for that
reason that we use the tensor as a basis for color feature detection.

Given an image f , the structure tensor is given by [8]

G =

(

f2
x

fxfy

fxfy f2
y

)

, (5.1)

where the subscripts indicate spatial derivatives and the bar (̄.) indicates convolution
with a Gaussian filter. Note that there are two scales involved in the computation
of the structure tensor. Firstly, the scale at which the derivatives are computed
and secondly the tensor-scale which is the scale at which the spatial derivatives are
averaged. The structure tensor describes the local differential structure of images, and
is suited to find features such as edges and corners [6], [11], [24]. For a multichannel

image f =
(

f1, f2, ..., fn
)T

, the structure tensor is given by

G =

(

fx ·fx fx ·fy
fy ·fx fy ·fy

)

. (5.2)

In the case that f = (R,G,B), Eq. 5.2 is the color tensor. For derivatives which are
accompanied with a weighting function, wx and wy, which appoint a weight to every
measurement in fx and fy, the structure tensor is defined by

G =







w2
xfx·fx
w2

x

wxwyfx·fy
wxwy

wywxfy·fx
wywx

w2
yfy·fy
w2

y






. (5.3)

In section 5.2.1, we discussed that physically meaningful features should be invariant
with respect to rotation of the color coordinates axes. The elements of the tensor are
known to be invariant under rotation and translation of the spatial axes. To prove
the invariant, we use the fact that ∂

∂xRf = Rfx, where R is a rotation operator,

(Rfx)
T

Rfy = fT
x RT Rfy = fT

x fy. (5.4)

where we have rewritten the inner product according to f · f = fT f

5.2.3 Photometric Invariant Derivatives

A good motivation for using color images is that photometric information can be
exploited to understand the physical nature of features. For example, pixels can be
classified as being from the same color but having different intensities which is possibly
caused by a shadow or shading change in the image. Further, pixels differences can also
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indicate specular reflection. For many applications it is important to distinguish the
scene incidental information from material edges. When color images are converted
to luminance this photometric information is lost [18].

The incorporation of photometric invariance in Eq. 5.2 can be obtained by using
invariant derivatives to compute the structure tensor. In chapter 3 we derive pho-
tometric quasi-invariant derivatives and full invariant derivatives. Quasi-invariants
differ from full invariants by the fact that they are variant with respect to a physical
parameter. Full invariants can be computed from quasi-invariants by the normaliza-
tion with a signal dependent scalar. The quasi-invariants have the advantage that
they do not exhibit the instabilities common to full photometric invariants. However
the applicability of the quasi-invariants is restricted to photometric invariant feature
detection. For feature extraction full photometric invariance is desired.

The dichromatic model divides the reflection in the interface (specular) and body
(diffuse) reflection component for optically inhomogeneous materials [66]. We assume
white illumination, i.e. smooth spectrum of nearly equal energy at all wavelengths,
and neutral interface reflection. For the validity of the photometric assumptions see
[16], [66]. The RGB vector, f = (R,G,B)T , can be seen as a weighted summation of
two vectors,

f = e(mbcb + mici), (5.5)

in which cb is the color of the body reflectance, ci the color of the interface reflectance
(i.e. specularities or highlights), mb and mi are scalars representing the corresponding
magnitudes of reflection and e is the intensity of the light source. For matte surfaces
there is no interface reflection and the model further simplifies to

f = embcb. (5.6)

The photometric derivative structure of the image can be computed by computing
the spatial derivative of Eq. 5.5

fx = embcb
x + (exmb + emb

x)cb +
(

emi
x + exmi

)

ci. (5.7)

The spatial derivative is a summation of three weighted vectors, successively caused
by body reflectance, shading-shadow and specular changes. From Eq. 5.6 it follows
that for matte surfaces the shadow-shading direction is parallel to the RGB vector,
f ||cb. The specular direction follows from the assumption that the color of the light
source is known.

For matte surfaces (i.e. mi = 0), the projection of the spatial derivative on the
shadow-shading axis yields the shadow-shading variant containing all energy which
could be explained by changes due to shadow and shading. Subtraction of the shadow-
shading variant Sx from the total derivative fx results in the shadow-shading quasi-
invariant:

Sx =
(

fx · f̂
)

f̂ =
(

emb
(

cb
x · f̂

)

+
(

exmb + emb
x

) ∣

∣cb
∣

∣

)

f̂

Sc
x = fx − Sx = emb

(

cb
x −

(

cb
x · f̂

)

f̂
) (5.8)
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which does not contain derivative energy caused by shadows and shading. The hat,
(̂.), denotes unit vectors. The full shadow-shading invariant results from normalizing
the quasi-invariant Sc

x by the intensity magnitude |f |

sx =
Sc

x

|f | =
emb

emb |cb|
(

cb
x −

(

cb
x

)

· f̂
)

, (5.9)

which is invariant for mb.
For the construction of the shadow-shading-specular quasi-invariant, we intro-

duce the hue-direction which is perpendicular to the light source direction ĉi and the
shadow-shading direction f̂ :

b̂ =
f̂ × ĉi

|f × ci| . (5.10)

Projection of the derivative, fx, on the hue direction results in the shadow-shading-
specular quasi-invariant:

Hc
x =

(

fx · b̂
)

b̂ = emb
(

cb
x · b̂

)

+
(

exmb + emb
x

) (

cb · b
)

. (5.11)

The second part of this equation is zero if we assume that shadow-shading changes
do not occur within a specularity, since then either

(

exmb + emb
x

)

= 0 or
(

cb · b
)

=
(f · b) = 0. Subtraction of the quasi-invariant Hc

x from the spatial derivative fx results
in the shadow-shading-specular variant Hx:

Hx = fx − Hc
x. (5.12)

The full shadow-shading invariant is computed by dividing the quasi-invariant by
the saturation. The saturation is equal to the norm of the color-vector, f , after the
projection on the plane perpendicular to the light source direction (which is equal to
subtraction of the part in the light source direction)

hx =
Hc

x

|f − (f · ĉi) ĉi| =
emb

emb |cb − (cb · ĉi) ĉi|
(

cb
x · b̂

)

. (5.13)

The expression hx is invariant for both mi and mb.
By projecting the local spatial derivative on three photometric axis in the RGB

cube we have derived the photometric quasi-invariants. These can be combined with
the structure tensor of Eq. 5.18 for photometric quasi-invariant feature detection. As
discussed in section 5.2.1 we would like features to be independent of the accidental
choice of the color coordinate frame. As a consequence a rotation of the color co-
ordinates should result in the same rotation of the quasi-invariant derivatives. For
example, for the shadow-shading quasi-variant Sx this can be proven by

(

(Rfx)
T

Rf̂
)(

Rf̂
)

=
(

fT
x RT Rf̂

)(

Rf̂
)

= R
(

fT
x f̂
)

f̂ = RSx. (5.14)

Similar proofs hold for the other photometric variants and quasi-invariants. The
invariance with respect to color coordinate transformation of the shadow-shading full



5.3. Robust Full Photometric Invariance 55

invariants follow from the fact that |Rf | = |f |. For the shadow-shading-specular full-
invariant, the invariance is proven by the fact that the inner product between two
vectors remains the same under rotations, and therefore

∣

∣Rf −
(

Rf · Rĉi
)

Rĉi
∣

∣ =
∣

∣R
(

f −
(

f · ĉi
)

ĉi
)∣

∣. Since the elements of the structure tensor are also invariant for
color coordinate transformations (see Eq 5.4) the combination of the quasi-invariants
and the structure tensor into a quasi-invariant structure tensor is also invariant for
color coordinate transformations.

5.3 Robust Full Photometric Invariance

In section 5.2.3 the quasi- and full invariant derivatives are described. The quasi-
invariants outperform the full-invariants on discriminative power and are more robust
to noise (see chapter 3). However, the quasi-invariants are not suited for applica-
tions which require feature extraction. These applications compare the photometric
invariant values between various images and need full photometric invariance (see
Table 5.1). A disadvantage of full photometric invariants is that they are unstable in
certain areas of the RGB-cube. E.g. the invariants for shadow-shading and speculari-
ties are unstable near the gray axis. These instabilities greatly reduce the applicability
of the invariant derivatives for which a small deviation of the original pixel color value
may result in a large deviation of the invariant derivative. In this section, we propose
a measure which describes the uncertainty of the photometric invariant derivatives,
thereby allowing for robust full photometric invariant feature detection.

We will first derive the uncertainty for the shadow-shading full invariant from its
relation to the quasi-invariant. We assume additive uncorrelated uniform Gaussian
noise. Due to the high-pass nature of differentiation we assume the noise of the zero
order signal (|f |) to be negligible compared to the noise on the first order signal (Sc

x).
In section 5.2.3, the quasi-invariant has been derived by a linear projection of the
derivative fx on the plane perpendicular to the shadow-shading direction. Therefore,
uniform noise in fx will result in uniform noise in Sc

x. The noise in the full invariant
can be written as

s̃x =
Sc

x + σ

|f | =
Sc

x

|f | +
σ

|f | . (5.15)

The uncertainty of the measurement of s̃x depends on the magnitude of |f |. For small
|f | the error increases proportionally. Therefore we propose to weight the full shadow-
shading invariant with the function w = |f | to robustify the color tensor-based on the
chromatic invariant. For shadow-shading invariance examples of the equations used
to compute the color tensor are given in Table 5.1.

For the shadow-shading-specular invariant, the weighting function should be pro-
portional with the saturation, since

h̃x =
Hc

x + σ

|s| =
Hc

x

|s| +
σ

|s| . (5.16)

This leads us to propose w = |s| as the weighting function of the hue derivative h̃x

see Fig. 5.2). On place where there is an edge, the saturation drops, and with the
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Table 5.1: Applicability of the different invariants for feature detection and extraction.

saturation the certainty of the hue measurement. The quasi-invariant (see Fig. 5.2d),
which is equal to the weighted hue, is more stable than the full invariant derivative
due to the incorporation of the certainty in the measurements. With the derived
weighting function we can compute the robust photometric invariant tensor (Eq. 5.3).

The uncertainties of the full-invariant by ways of error-propagation have also been
investigated by Stokman and Gevers[19]. Our assumption of uniform noise in the
RGB channels together with the choice of invariants based on orthogonal color space
transformations leads to a simplification of the uncertainty measure. It also connects
with the intuitive notion that the uncertainty of the hue is depended on the saturation
and the uncertainty of the chromaticity (shadow-shading invariant) with the intensity.

5.4 Color Tensor-Based Features

In this section we show the generality of the proposed method by summing features
which can be derived from the color tensor. In section 5.2.3 and in section 5.3 we
described how to compute invariant derivatives. Dependent on the task at hand
we proposed to use either quasi-invariants for detection or robust full invariants for
extraction. The features in this chapter will be derived for gx. By replacing the inner

(a) (b) (c) (d)

Figure 5.2: (a) test image (b) hue derivative (c) saturation (d) quasi-invariant (see
also color plate C.10).
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product of gx by one of the following

{

fx · fx,Sc
x · Sc

x,
Sc

x · Sc
x

|f |2
,Hc

x · Hc
x,

Hc
x · Hc

x

|s|2

}

. (5.17)

the acquired photometric invariant features are attained. In section 5.4.1 we describe
features derived from the eigenvalues of the tensor. In section 5.4.2 features which
are derived from an adapted version of the structure tensor and in section 5.4.3 we
describe color optical flow.

5.4.1 Eigenvalue-Based Features

Eigenvalue analysis of the tensor leads to two eigenvalues which are defined by

λ1 = 1
2

(

gx ·gx + gy ·gy +
√

(gx ·gx − gy ·gy)
2

+ (2gx ·gy)
2

)

λ2 = 1
2

(

gx ·gx + gy ·gy −
√

(gx ·gx − gy ·gy)
2

+ (2gx ·gy)
2

)

.
(5.18)

The direction of λ1 indicates the prominent local orientation

θ = 1
2 arctan

(

2gx ·gy

gx ·gx − gy ·gy

)

. (5.19)

The λ’s can be combined to give the following local descriptors:

• λ1 + λ2 describes the total local derivative energy.

• λ1 is the derivative energy in the most prominent direction.

• λ1 −λ2 describes the line-energy (see [62]). The derivative energy in the promi-
nent orientation is corrected for the energy contributed by the noise λ2.

• λ2 describes the amount of derivative energy perpendicular to the prominent
local orientation which is used to select features for tracking [67].

An often applied feature detector is the Harris corner detector [27]. The color Harris
operator H can be written as a function of the eigenvalues of the structure tensor

Hf = gx ·gx gy ·gy − gx ·gy
2 − k (gx ·gx + gy ·gy)

2

= λ1λ2 − k (λ1 + λ2)
2
.

(5.20)

5.4.2 Adaptations of the Color Tensor

The same equations as DiZenzo’s equations for orientation estimation are found by
Kass and Witkin [37]. They studied orientation estimation for oriented patterns
(e.g. fingerprint images). Oriented patterns are defined as patterns with a dominant
orientation everywhere. For oriented patterns other mathematics are needed than
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for regular object images. The local structure of object images is described by a
step edge, whereas for oriented patterns the local structure is described as a set
of lines (roof edges). Lines generate opposing vectors on a small scale. Hence for
geometric operations on oriented patterns, methods are needed for which opposing
vectors enforce one another. This is the same problem as encountered for all color
images, where the opposing vector problem does not only occur for oriented patterns,
but also for step edges, for which the opposing vectors occur in the different channels.
Hence similar equations were found in both fields. Next to orientation estimation,
a number of other estimators were proposed by oriented pattern research [6], [24],
[79]. These operation are based on adaptations of the structure tensor and can also
be applied to the color tensor.

The structure tensor of Eq. 5.2 can also be seen as a local projection of the

derivative energy on two perpendicular axes, namely u1 =
(

1 0
)T

and u2 =
(

0 1
)T

,

Gu1,u2 =

(

(Gx,yu1) · (Gx,yu1) (Gx,yu1) · (Gx,yu2)

(Gx,yu1) · (Gx,yu2) (Gx,yu2) · (Gx,yu2)

)

(5.21)

in which Gx,y =
(

gx gy

)

. From the Lie group of transformation several other
choices of perpendicular projections can be derived [6], [24]. They include feature
extraction for circle, spiral and star-like structures.

The star and circle detector is given as an example. It is based on u1 =
1√

x2+y2

(

x y
)T

which coincide with the derivative pattern of a circular patterns

and u2 = 1√
x2+y2

(

−y x
)T

which denotes the perpendicular vector field which

coincides with the derivative pattern of starlike patterns. These vectors can be used
to compute the adapted structure tensor with Eq. 5.21. Only the elements on the
diagonal have non zero entries and are equal to

H =

(

x2

x2+y2 gx ·gx + 2xy
x2+y2 gx ·gy + y2

x2+y2 gy ·gy 0

0 x2

x2+y2 gy ·gy − 2xy
x2+y2 gx ·gy + y2

x2+y2 gx ·gx

)

, (5.22)

here λ1 describes the amount of derivative energy contributing to circular structures
and λ2 the derivative energy which describes a starlike structure. Similar to the
proof given in Eq. 5.4 the elements of Eq. 5.22 can be proven to be invariant under
transformations of the RGB-space.

Curvature is another feature which can be derived from an adaption of the struc-
ture tensor, as discussed in chapter 4. The fit between the local differential structure
and a parabolic model function can be written as a function of the curvature. Finding
the optimum of this function yields an estimation of the local curvature. For vector
data the equation for the curvature is given by

κ =
w2gv ·gv − w2 ·gw ·gw −

√

(

w2 ·gw ·gw − w2gv ·gv

)2

+ 4w2 ·wgv ·gw
2

2w2 ·wgv ·gw

(5.23)



5.5. Experiments 59

in which gv and g−w are the derivatives in gauge coordinates.

5.4.3 Color Optical Flow

Optical flow can also be computed from the structure tensor. This is originally pro-
posed by Simoncelli [68] and has been extended to color in [4], [21]. The vector of a
multi-channel point over time stays constant [31], [48]

dg

dt
= 0. (5.24)

Differentiating yields the following set of equations

Gx,y v + gt = 0 (5.25)

with v the optical flow. To solve the singularity problem and to robustify the opti-
cal flow computation we follow Simoncelli [68] and assume a constant flow within a
Gaussian window. Solving Eq. 5.25 leads to the following optical flow equation

v = (Gx,y · Gx,y)−1 Gx,y · gt = M−1b (5.26)

with

M =

(

gx ·gx gx ·gy

gy ·gx gy ·gy

)

(5.27)

and

b =

(

gx ·gt

gy ·gt

)

. (5.28)

The assumption of color optical flow based on RGB is that RGB pixel values
remain constant over time (see Eq. 5.24). A change of brightness introduced due
to a shadow, or a light source with fluctuating brightness such as the sun results
in non existent optical flow. This problem can be overcome by assuming constant
chromaticity over time. For photometric invariant optical flow, full invariance is
necessary since the optical flow estimation is based upon comparing the (extracted)
edge response of multiple frames. Consequently photometric invariant optical flow
can be attained by replacing the inner product of gx by one of the following

{

Sc
x · Sc

x

|f |2
,
Hc

x · Hc
x

|s|2

}

. (5.29)

5.5 Experiments

The experiments test the features on the required criteria of our framework: 1. pho-
tometric invariance, 2. robustness. The third criterium, i.e. invariance with respect
to color coordinate transformations, we have already proven theoretically. In this
section we aim to demonstrate invariance by experiment and illustrate the generality
of the experiments by the variety of examples. For all experiments the derivatives are
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Table 5.2: Percentage of falsely detected points and percentage of wrongly classified
points. Classification is based on the extraction of invariant information. Uncorrelated
Gaussian noise is added with standard deviation 5 and 20.

computed with a Gaussian derivative of σ = 1 and the color tensor scale is computed
with σ = 3, except when mentioned otherwise. The experiments are performed using
a Sony 3CCD color camera XC-003P, Matrox Corona Frame-grabber, and two Osram
18 Watt “Lumilux deLuxe daylight” fluorescent light sources.

5.5.1 Photometric Invariant Harris Point Detection

Robustness with respect to photometric changes, stability of the invariants, and ro-
bustness to noise, are tested. Further the ability of invariants to detect and extract

(a) (b) (c)

Figure 5.3: (a) An example from Soil-47 image. (b) shadow-shading distortion with
the shadow-shading quasi-invariant Harris points superimposed (c) specular distor-
tion and the shadow-shading-specular Harris points superimposed (see also color plate
C.11).
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features is examined, see also Table 5.1. The experiment is performed with the photo-
metric invariant Harris corner detector (Eq. 5.20) and is executed on the Soil47 multi
object set [42], which comprises of 23 images, see Fig. 5.3a.

First, the feature detection accuracy of the invariants is tested. For each image
and invariant, the 20 most prominent Harris points are extracted. Next, Gaussian
uncorrelated noise is added to the data, and the Harris point detection is computed
10 times per image. The percentage of points which do not correspond to the Harris
points in the noiseless case are given in Table 5.2. The Harris point detector based
on the quasi-invariant outperforms the alternatives. The instability within the full
invariant can be partially repaired by the robust full invariant, however for detection
purposes the quasi-invariants remain the best choice.

Next, the feature extraction for the invariants is tested. Again the 20 most promi-
nent Harris points are detected in the noise free image. For these points the pho-
tometric invariant derivative energy is extracted by

√
λ1 + λ2 − 2λn, where λn is an

estimation of the noise which contributes to the energy in both λ1 and λ2. To imitate
photometric variations of images we apply the following photometric distortion to the
images (compare with Eq. 5.5)

g (x) = α (x)f (x) + β (x)ci + η (x) , (5.30)

where α (x) is a smooth function resembling variation similar to shading and shadow
effects, β (x) is a smooth function which imitates specular reflections, and η (x) is
Gaussian noise. To test the shadow-shading extraction α (x) is chosen to vary be-
tween 0 and 1, and β (x) is 0. To test the shadow-shading-specular invariants α (x)
was chosen constant at 0.7 and β (x) varied between zero and fifty. After the photo-
metric distortion the derivative energy is extracted at the same twenty points. The
extraction is considered correct if the deviation of the derivative energy between the
distorted and the noise-free case is less then 10 percent. The results are given in
Table 5.2. Quasi-invariants which not suited for extraction have a hundred percent
error. The full invariants have better results but with worsening signal-to-noise ratio
its performance drops drastically. In accordance with the theory in section 5.3 the
robust full invariants successfully improve the performance.

5.5.2 Color Optical Flow

Robustness of the full photometric invariance features is tested on photometric in-
variant optical flow estimation. The optical flow is estimated on a synthetical image
sequence with constant optical flow. We use the robust full photometric structure
tensor for the estimation of optical flow and compare it with ’classical’ photometric
optical flow as proposed by [21]. Derivatives are computed with a Gaussian derivative
of σ = 1 and the color tensor scale is σ = 5.

The shadow-shading photometric optical flow is tested on image with decreasing
intensity (see Fig. 5.4a ) which is shifted one pixel per frame. Uncorrelated Gaussian
noise with σ = 20 is added to the sequence. In Fig. 5.4b,c the mean and the standard
deviation of the optical flow along the y-axis of Fig. 5.4a are depicted. Similarly
to the shadow-shading-specular invariant optical flow is tested on a sequence with
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(d) (e) (f)

Figure 5.4: (a),(d) frame from test sequence with constant optical flow of one pixel per
frame. (b),(c) mean and relative standard deviation mean of the optical flow based on
RGB (black line), shadow-shading invariant (blue line) and robust shadow-shading
invariant (red line). (e),(f) mean and relative standard deviation of the optical flow
based on RGB (black line), shadow-shading-specular invariant (blue line) and robust
shadow-shading-specular invariant (red line) (see also color plate C.12).

increasing achromaticity along the axes (see Fig. 5.4d,e,f.). The results show that
robust invariant methods (red lines) outperform the standard photometric optical flow
(blue lines). The gained robustness becomes apparent for the measurements around
the instable region. Which are the black area for the shadow-shading invariant and
the achromatic, grey area for the shadow-shading-specular invariant optical flow.

As an example of a real-world scene, multiple frames are taken from static objects
while the light source position is changed. This results in a violation of the brightness

(a) (b) (c) (d)

Figure 5.5: (a) frame 1 of object scene with filter size superimposed on it. (b) RGB
gradient optical flow (c) shadow-shading invariant optical flow and (d) robust shadow-
shading invariant optical flow (see also color plate C.13).
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(a) (b) (c) (d) (e)

Figure 5.6: (a) input image with Canny edge detection based on successively (b) lumi-
nance derivative (c) RGB derivatives (d) the shadow-shading quasi-invariant (e) the
shadow-shading-specular quasi-invariant (see also color plate C.14).

constraint by changing shading and moving shadows. Since both the camera and the
objects did not move the ground truth optical flow is zero. The violation of the bright-
ness constraint disturbs the optical flow estimation based on the RGB (Fig. 5.5b).
The shadow-shading invariant optical flow estimation is much less disturbed by the
violation of the brightness constrain (Fig. 5.5c). However, the flow estimation is still
unstable around some of the edges. The robust shadow-shading invariant optical flow
has the best results and is only unstable in low-gradient area’s (Fig. 5.5d).

5.5.3 Color Canny Edge Detection

We illustrate the use of eigenvalue-based features by adapting the Canny edge de-
tection algorithm to allow for vectorial input data. The algorithm consists of the
following steps

1. Compute the spatial derivatives, fx, and combine them if desired into a quasi-
invariant (Eq. 5.8 or Eq. 5.11).

2. Compute the maximum eigenvalue (Eq. 5.18) and its orientation (Eq. 5.19).

3. Apply non-maximum suppression on λ1 in the prominent direction.

In Fig. 5.6 the results of color Canny edge detection for several photometric quasi-
invariants is shown. The results show that the luminance-based Canny, Fig. 5.6b,
misses several edges which are correctly found by the RGB-based method , Fig. 5.6c.
Also the removal of spurious edges by photometric invariance is demonstrated. In
Fig. 5.6d the edge detection is robust to shadow and shading changes and only detects
material and specular edges. In Fig. 5.6e only the material edges are depicted.

5.5.4 Circular Object Detection

The use of photometric invariant orientation and curvature estimation is demon-
strated on a circle detection example. Other than the previous experiments these
images have been recorded by the Nikon Coolpix 950, a commercial digital camera of
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(a) (b) (c)

Figure 5.7: (a) detected circles based on luminance (b) detected circles based on
shadow-shading-specular quasi-invariant (c) detected circles based on shadow-shading-
specular quasi-invariant (see also color plate C.15).

average quality. The images have size 267x200 pixels with JPEG compression. The
digitization was done in 8 bits per color.

Circular object recognition is complicated due to shadow, shading and specular
events which influence the feature extraction. We apply the following algorithm for
circle detection

1. Compute the spatial derivatives, fx, and combine them if desired into a quasi-
invariant (Eq. 5.8 or Eq. 5.11).

2. Compute the local orientation, Eq. 5.19, and curvature, Eq. 5.23.

3. Compute the hough space [3], H
(

R, x0, y0
)

, where R is the radius of the circle
and x0 and y0 indicate the center of the circle. The computation of the orien-
tation and curvature reduces the number of votes per pixel to one. Namely, for
a pixel at position x =

(

x1, y1
)

,

R = 1
κ

x0 = x1 + 1
κ cos θ

y0 = y1 + 1
κ sin θ.

(5.31)

Every pixel votes with its the derivative energy
√

fx ·fx.

4. Compute the maxima in the hough space. These maxima indicate the circle
centers and the radii of the circle.

In Fig. 5.7 the results of the circle detection are given. The luminance-based circle
detection is corrupted by the photometric variation in the image. Nine circles had
to be detected before the five balls were detected. For the shadow-shading-specular
quasi-invariant based method the five most prominent peaks in the hough space coin-
cide with reasonable estimates of the radii and center points of the circles. Note that,
although the recordings do not fulfill the assumptions on which the dichromatic model
is based, such as white light source, saturated pixels and linear camera response, the
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(a) (b) (c)

Figure 5.8: (a) input image (b) the circularity coefficient C (c) the detected circles
(see also color plate C.16).

invariants still improve performance by partially suppressing scene incidental events,
such as shadows and specularities. In Fig. 5.7 an outdoor example with a shadow
partially covering the objects is given.

5.5.5 Local Color Symmetry Detector

The applicability of the features derived from an adaptation of the structure tensor
(section 5.4.2) is illustrated here for a symmetry detector. We apply the circle detector
to an image containing Lego-blocks (Fig. 5.8). Because we know that the color within
the blocks remains the same, the circle detection is done on the shadow-shading-
specular variant, Hx (Eq. 5.11). The shadow-shading-specular variant contains all the
derivative energy except for the energy which can only be caused by a material edge.
With the shadow-shading-specular variant the circular energy λ1 and the starlike
energy λ2 are computed according to Eq. 5.22. Dividing the circular energy by the
total energy yields a descriptor of local circularity (see Fig. 5.8b)

C =
λ1

λ1 + λ2
. (5.32)

The superimposed maxima of C, Fig. 5.8c, give good estimation of the circle centers.

5.6 Conclusions

In this chapter we proposed a framework to combine tensor-based features and pho-
tometric invariance theory. The tensor basis of these features ensures that opposing
vectors in different channels do not cancel out, but instead that they reinforce each
other. To overcome the instability caused by transformation to an photometric full
invariant, we propose an uncertainty measure to accompany the full invariant. This
uncertainty measure is incorporated in the color tensor to generate robust photomet-
ric invariant features. Experiments show that: 1) the color based features outperform
their luminance counterparts, 2) the quasi-invariants give stable detection, and 3)
that the robust invariants give better extraction results.
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Chapter 6

Boosting Color Saliency in

Image Feature Detection

6.1 Introduction

Indexing objects and object categories as an ordered collection of salient points has
been successfully applied to image matching, content-based retrieval, learning and
recognition [13], [47], [54], [63], [65], [85]. Salient points are local features in the im-
age which exhibit geometrical structure, such as T-junctions, corners, and symmetry
points. The aim of salient point detection is to represent objects more concisely and
robust to varying viewing conditions, such as changes due to zooming, rotation, and
illumination changes. Applications based on salient points are generally composed of
three phases: 1. a feature detection phase locating the features. 2. an extraction
phase in which local descriptions are extracted at the detected locations and 3. a
matching phase in which the extracted descriptors are matched against a database of
descriptors. In this chapter, the focus is to improve the salient point detection phase.

Although the majority of image data is in color format nowadays, most salient
point detectors are still luminance based. They typically focus on shape saliency
rather than color saliency [44], [93]. They focus on corner points without distinguish-
ing low-salient black-and-white corners from high-salient red-green corners. Only
recently color information has been incorporated in the detection phase. Montesinos
et al. [55] propose an extension of the luminance Harris corner detector to color [27].
Heidemann [29] incorporates color into the generalized symmetry transform proposed
by Reisfeld et al. [60]. Both methods achieve a performance gain for near isoluminant
events. However, since the luminance axis remains the major axes of color variation in
the RGB-cube, results do not differ greatly from luminance based feature detection.
Itti et al. [33] use color contrast as a clue for salience. Their method is based on a
zero-order signal which is not easily extendable to differential-based features.

For the evaluation of salient point detectors Schmid et al. [64] proposed two crite-
ria: 1. repeatability, salient point detection should be stable under the varying viewing

67
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conditions, such as geometrical changes and photometric changes. 2. distinctiveness,
salient points should focus on events with a low probability of occurrence. Most
salient point detectors are designed according to these criteria. They focus on two
dimensional structures, such as corners, which are stable and distinctive at the same
time. Although color is believed to play an important role in attributing saliency
[34], the explicit incorporation of color distinctiveness into the design of salient points
detectors has, to our knowledge, not been done.

A remarkable phenomenon appears when studying the statistics of color image
derivatives. In histograms of color derivatives, points of equal frequency form regular
structures. These color image derivatives play two roles in salient point detection.
Firstly, they are input to the saliency function, which based on local derivatives
probes for salient structures. Secondly, they are part of the extracted local features,
on which the distinctiveness of the salient point detector is based. This double role,
together with the statistical finding described above, leads to the following question:
How can we exploit the regularity of the distinctiveness of color image derivatives to
improve salient feature detection ?

In this chapter we aim to incorporate color distinctiveness into salient point de-
tection. The extension should be general and hence be easy to incorporate in existing
salient point detectors. For a color image, with values f = (R,G,B)

T
, salient points

are the maxima of the saliency map, which compares the derivative vectors in a
neighborhood fixed by scale σ,

s = Hσ (fx, fy) (6.1)

where H is the saliency function and the subscript indicates differentiation with re-
spect to the parameter. This type of saliency maps include [6], [27], [29], [44], [76].
The impact of a derivative vector on the outcome of the local salience depends on
its vector norm, |fx|. Hence, vectors with equal norm have an equal impact on the
local saliency. Rather than deriving saliency from the vector norm, the challenge is
to adapt the saliency function in order that vectors with equal color distinctiveness
have equal impact on the saliency function.

6.2 Color Distinctiveness

The efficiency of salient point detection depends on the distinctiveness of the extracted
salient points. At the salient points’ positions, local neighborhoods are extracted and
described by local image descriptors. The distinctiveness of the descriptor defines the
conciseness of the representation and the discriminative power of the salient points.
The distinctiveness of interest points is measured by its information content [64].

For luminance-based descriptors, the information content is measured by looking
at the distinctiveness of the differential invariants described by the local 2-jet [40] at
the detected points [63]. Montesinos et al. [55] argue that due to the extra information
available in color images the color 1-jet is sufficient for local structure description. The
color 1-jet descriptor is given by

v =
(

R G B Rx Gx Bx Ry Gy By

)T
. (6.2)
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The information content of this color descriptor includes the information content of
more complex local color descriptors such as color differential invariant descriptors,
since these complex descriptors are computed from the elements of Eq. 6.2.

From information theory it is known that the information content of an event
is dependent on its frequency or probability. Events which occur rarely are more
informative. The dependency of information content on its probability is given by

I (v) = − log (p (v)) (6.3)

where p (v) is the probability of the descriptor v. The information content of the
descriptor, given by Eq. 6.2, is approximated by assuming independent probabilities
of the zeroth order signal and the first order derivatives

p (v) = p (f) p (fx) p (fy) . (6.4)

To improve the information content of the salient point detector, defined by Eq. 6.1,
the probability of the derivatives, p (fx), should be small.

We can now restate the aim of this chapter in a more precise manner. The aim is
to find a transformation g : <3 → <3 for which holds that

p (fx) = p
(

f
′

x

)

↔ |g (fx)| =
∣

∣

∣g
(

f
′

x

)∣

∣

∣ . (6.5)

This implies that vectors with equal information content have equal impact on the
saliency function. The transformation, attained by the function g, is called color
saliency boosting. Similar equations hold for p (fy). Once a color boosting function g
has been found, the color boosted saliency can be computed with

s = Hσ (g (fx) , g (fy)) . (6.6)

The saliency map which used to derive saliency from the orientations and gradient
strength of the derivatives in a local neighborhood, is after color boosting based on the
orientations and the information content of these derivatives. Gradient strength has
been replaced by information content, thereby aiming for higher information content.

From Eq. 6.5 the color boosting function g is found by analyzing the probabilities
of the derivatives. The channels of fx, {Rx, Gx, Bx} are correlated due to the physics
of the world. Photometric events in the world, such as shading, and reflection of the
light source in specularities influence RGB values in a well defined manner [66]. Before
investigating the statistics of color derivatives, the derivatives need to be transformed
to a color space which is uncorrelated with respect to these photometric events.

6.3 Physics-Based Decorrelation

Here we describe three color coordinate transformations which partition RGB-space
differently. The transformation are derived from photometric invariance theory [66].
Photometric invariance theory allows us to distinguish between various photometric
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causes for features in the image, such as shadows, shading, specularities and object re-
flectance changes. The theory is based on the dichromatic reflection model introduced
by Shafer [66]. Geusebroek et al. [16] extended the photometric reflection theory to
differential-based operations. In chapter 3 we introduced the quasi-invariant deriva-
tives to improve noise characteristics. Here we use the same color transformations to
decorrelate the spatial derivative, fx, into axes which are photometrically variant and
photometrically invariant.

6.3.1 Spherical Color Spaces

The spherical color transformation, see Fig. 6.1a, is given by:





θ
ϕ
r



 =







arctan(G
R )

arcsin
( √

R2+G2√
R2+G2+B2

)

r =
√

R2 + G2 + B2






. (6.7)

The spatial derivatives are transformed to the spherical coordinate system by:

S (fx) = fs
x =





r sinϕ θx

rϕx

rx



 =







GxR−RxG√
R2+G2

RxRB+GxGB−Bx(R2+G2)√
R2+G2

√
R2+G2+B2

RxR+GxG+BxB√
R2+G2+B2






. (6.8)

The scale factors follow from the Jacobian of the transformation. They ensure that
the norm of the derivative remains constant under transformation, hence |fx| = |fs

x |.
In the spherical coordinate system the derivative vector is a summation of a shadow-
shading variant part, Sx = (0, 0, rx)

T
and a shadow-shading quasi-invariant part,

given by Sc
x = (r sin ϕθx, rϕx, 0)

T
.

6.3.2 Opponent Color Spaces

The opponent color space, see Fig. 6.1b, is given by:





o1
o2
o3



 =







R−G√
2

R+G−2B√
6

R+G+B√
3






. (6.9)

For this the following transformation of the derivatives follows:

O (fx) = fo
x =





o1x

o2x

o3x



 =







1√
2

(Rx − Gx)
1√
6

(Rx + Gx − 2Bx)
1√
3

(Rx + Gx + Bx)






. (6.10)

The opponent color space decorrelates the derivative with respect to specular changes.
The derivative is divided into a specular variant part, Ox = (0, 0, o3x)

T
, and a specular

quasi-invariant part Oc
x = (o1x, o2x, 0)

T
.
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Figure 6.1: The spherical, opponent and hue-saturation-intensity coordinate system.

6.3.3 Hue-Saturation-Intensity Color Spaces

The well known hue-saturation-intensity is given by





h
s
i



 =





arctan
(

o1
o2

)

√
o12 + o22

o3



 . (6.11)

The transformation of the spatial derivatives into the hsi-space decorrelates the
derivative with respect to specular, shadow and shading variations,

H (fx) = fh
x =





s hx

sx

ix



 =









(R(Bx−Gx)+G(Rx−Bx)+B(Gx−Rx))√
2(R2+G2+B2−RG−RB−GB)

R(2Rx−Gx−Bx)+G(2Gx−Rx−Bx)+B(2Bx−Rx−Gx)√
6(R2+G2+B2−RG−RB−GB)

(Rx+Gx+Bx)√
3









.

(6.12)

The shadow-shading-specular variant is given by Hx = (0, 0, ix)
T

and the shadow-

shading-specular quasi-invariant by Hc
x = (shx, sx, 0)

T
.

Since the length of a vector is not changed by coordinate transformations, the norm
of the derivative remains the same in all three representations |fx| = |f c

x| = |fo
x | =

∣

∣fh
x

∣

∣.
For both the opponent color space and the hue-saturation-intensity color space, the
photometrically variant direction is given by the L1 norm of the intensity. For the
spherical coordinate system the variant is equal to the L2 norm of the intensity.

We discussed three color spaces which decorrelate the color spaces with respect
to various physical events. In the decorrelated color spaces often occurring physical
variations, such as intensity changes, will only influence the photometric variant axes.
In the next section the statistics of color image derivatives are examined in these
decorrelated color spaces.

6.4 Statistics of Color Images

As discussed in Section 6.2 the information content of a descriptor depends on the
probability of the derivatives, see Eq. 6.3 and Eq. 6.4. In this section we investigate
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Figure 6.2: The histograms of the distribution of the transformed derivatives of the
Corel image database in respectively the (a) RGB coordinates, (b) the opponent co-
ordinates and (c) the spherical coordinates. The three planes correspond with the
isosalient surfaces which contain (from dark to light) respectively 90%, 99%, 99.9%t
of the total number of pixels (see also color plate C.17).

the statistics of color derivatives in the decorrelated color spaces proposed in Section
6.3. From the statistics we aim to find a mathematical description of surfaces of equal
probability, so called isosalient surfaces. Since a description of these surfaces leads to
the solution of Eq. 6.5.

The statistics of color images are shown for the Corel database [15], which consists
of 40,000 images after the exclusion of black and white images. In Fig. 6.2 the dis-
tributions of the first order derivatives, fx, are given for the various color coordinate
systems described in section 6.3 (HSI has been left out due to space considerations).
The isosalient surfaces show a remarkably simple structure, approximately similar to
an ellipsoid. For all three color spaces, the third coordinate coincides with the axis
of maximum variation (i.e. the intensity). For the opponent and the spherical coor-
dinate system, the first and second coordinate are rotated, with rotation matrix Rφ,
so that the first coordinate coincides with the axis of minimum variation

(

r sin ϕ̃ θ̃x, rϕ̃x

)T

= Rφ (r sinϕθx, rϕx)
T

(õ1x, õ2x)
T

= Rφ (o1x, o2x)
T

.
(6.13)

The tilde indicates the color space transformation with the aligned axes. Similarly,
the aligned transformations are given by S̃ (fx) = f s̃

x and Õ (fx) = f õ
x .

After alignment of the axes isosalient surfaces of the derivative histograms can be
approximated by ellipsoids

(

αh1
x

)2
+
(

βh2
x

)2
+
(

γh3
x

)2
= R2 (6.14)

where hx = h (fx) =
(

h1
x, h2

x, h3
x

)T
and h is one of the transformations S̃, Õ, or H.



6.5. Boosting Color Saliency 73

6.5 Boosting Color Saliency

We now return to our goal, that is to incorporate color distinctiveness into salient
point detection. Or mathematically, to find the transformation for which vectors
with equal information content have equal impact on the saliency function. In the
previous section we saw that derivatives of equal saliency form an ellipsoid. Since
Eq. 6.14 is equal to

(

αh1
x

)2
+
(

βh2
x

)2
+
(

γh3
x

)2
= |Λh (fx)|2 (6.15)

the following holds

p (fx) = p
(

f
′

x

)

↔ |Λh (fx)| =
∣

∣

∣ΛT h
(

f
′

x

)∣

∣

∣ , (6.16)

where Λ is a 3x3 diagonal matrix with Λ11 = α, Λ22 = β, and Λ33 = γ. Λ is restricted
to Λ2

11+Λ2
22+Λ2

33 = 1. The desired saliency boosting function (see Eq. 6.5) is obtained

g (fx) = Λh (fx) . (6.17)

By a rotation of the color axes followed by a rescaling of the axis, the oriented isos-
alient ellipsoids are transformed into spheres, and thus vectors of equal saliency are
transformed into vectors of equal length.

6.5.1 Influence of Color Saliency Boosting on Repeatability

In the introduction two criteria for salient point detection were described, namely
distinctiveness and repeatability. The color boosting algorithm is designed to focus
on color distinctiveness, while adopting the geometrical characteristics of the operator
to which it is applied. In this section we examine the influence of color boosting on
the repeatability. We identify two phenomena which influence the repeatability of
g (fx). Firstly, by boosting the color saliency an anisotropic transformation is carried
out. This will reduce the signal-to-noise ratio negatively. Secondly, by boosting the
photometric invariant directions more than the photometric variant directions, we
improve robustness with respect to scene accidental changes.

For isotropic uncorrelated noise, ε, the measured derivative f̂x can be written as

f̂x = fx + ε (6.18)

and after color saliency boosting

g
(

f̂x

)

= g (fx) + Λε. (6.19)

Note that isotropic noise remains unchanged under the orthogonal curvilinear trans-
formations. Assume the worst case in which fx only has signal in the photometric
variant direction, then the noise can be written as

|g (fx)|
|Λε| ≈ Λ33 |fx|

Λ11 |ε|
. (6.20)
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fx |fx|
1

f
s̃
x S̃

c
x f

õ
x Õ

c
x f

h
x H

c
x

Λ11 0.577 1 0.851 0.856 0.850 0.851 0.858 1

Λ22 0.577 - 0.515 0.518 0.524 0.525 0.509 0

Λ33 0.577 - 0.099 0 0.065 0 0.066 0

Table 6.1: The diagonal entries of Λ for the Corel data set computed for Gaussian
derivatives with σ = 1.

Hence, the signal-to-noise ratio reduces by Λ11

Λ33

, which will negatively influence re-
peatability to geometrical and photometrical changes.

The second phenomena which influences repeatability is the gain in photometric
robustness. By boosting color saliency the influence of the photometric variant direc-
tion diminishes while the influence of the quasi-invariant directions increases. As a
consequence the repeatability under photometric changes, such as changing illumina-
tion and viewpoint, increases.

Depending on the task at hand, distinctiveness may be less desired than signal-
to-noise. For this purpose the α parameter is proposed, which allows for choosing
between best signal-to-noise characteristics, α = 0, and best information content,
α = 1:

gα (fx) = αΛh (fx) + (1 − α) h (fx) . (6.21)

For α = 0 this is equal to color gradient-based salient point detection.

6.6 Experiments and Illustrations

Color saliency boosting is tested on: information content and repeatability. The
salient points based on color saliency boosting are compared to luminance, RGB
gradient, and the quasi-invariant-based salient point detectors. The generality of the
approach is illustrated by applying color boosting to several existing feature detectors.

6.6.1 Initialization

Experiments are performed on a subset of 1000 randomly chosen images from the Corel
data set. Before color saliency boosting can be applied, the Λ-parameters (Eq.6.15)
have to be initialized by fitting ellipses to the histogram of the data set. First the
axes of the opponent and the spherical transformation are aligned by Eq. 6.13. Next,
the axes of the ellipsoid are derived by fitting the isosaliency surface which contains
99 percent of the pixels of the histogram of the Corel data set. The results for the
various transformations are summarized in Table 6.1. The relation between the axes
in the various color spaces clearly confirms the dominance of the luminance axis in
the RGB-cube, since Λ33, the multiplication-factor of the luminance axis, is much
smaller than the color-axes multiplication factors, Λ11 and Λ22.

To give an idea on how the Λ-parameters change when changing the data set, we
also estimated the Λ parameters for two other data sets, the Soil data [42] and a table-
tennis sequence (see Fig. 6.3a,c). For the Soil data and the opponent color model the
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(c) (d)

(a) (b)

Figure 6.3: (a) Example Soil data set and (c) frame from table-tennis sequence. (b)
and (d) results of Harris detector (red dots) and the Harris detector with color boosting
(yellow dots). The red dots mainly coincide with black and white events, while the
yellow dots are focussed on colorful points (see also color plate C.18).

Λ-parameters are Λ11 = 0.542, Λ22 = 0.780, and Λ33 = 0.313. Since this set consists
of colorful objects the luminance axis is less suppressed than for the Corel set. For the
tennis sequence the difference with Corel is smaller, Λ11 = 0.588, Λ22 = 0.799, and
Λ33 = 0.124. A change in Λ-parameters can have various causes such as the quality
of the camera, the applied compression and the different content of the data.

We have chosen the Harris point detector [27] to test color boosting in experiment
B, C, and D. It is computed with

Hσ (fx, fy) = fx · fx fy · fy − fx · fy
2 − k

(

fx · fx + fy · fy
)2

(6.22)

by substituting fx and fy by g (fx) and g (fy). The bar .̄ indicates convolution with
a Gaussian filter and the dot indicates the inner product. We applied Gaussian
derivatives of σ = 1 and Gaussian smoothing with σ = 3.

6.6.2 Color Distinctiveness

Here we examine if color boosting improves the color distinctiveness of the Harris
detector. In [64], the Harris detector has already been shown to outperform other
detectors both on ’shape’ distinctiveness and repeatability. The color distinctiveness
of salient point detectors is described by the information content of the descriptors
extracted at the locations of the salient points. From the combination of Eq. 6.3 and
Eq. 6.4, it follows that the total information is computed by summing the information
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standard descriptor normalized descriptor

20 points 100 points 20 points 100 points

method inf. incr(%) decr(%) inf. incr. decr. inf. incr. decr. inf. incr. decr.

fx 20.4 - - 20.0 - - 13.2 - - 13.9 - -

|fx|
1

19.9 0 1.4 19.8 0 0.8 13.0 0 2.7 13.8 0 1.0

S̃
c
x 22.2 45.5 10.1 20.4 9.1 17.7 17.9 92.9 0.9 16.2 69.8 2.8

f
s̃
x

22.3 49.4 .6 20.8 13.1 1.3 16.9 86.9 0.6 15.5 57.6 .7

Õ
c
x

22.6 51.4 12.9 20.5 12.0 34.2 18.9 92.5 1.3 16.5 64.6 10.8

f
õ
x 23.2 62.6 0.0 21.4 21.5 0.9 18.4 88.2 0.3 16.4 65.0 1.7

H
c
x

21.0 21.7 43.4 19.0 1.8 77.4 17.3 77.1 10.9 14.8 31.7 37.9

f
h
x 23.0 57.2 0.3 21.3 16.7 1.1 18.3 87.4 0.5 16.2 62.3 2.2

rand. 14.4 0 99.8 14.4 0 100 10.1 2.7 89.1 10.2 .6 96.7

Table 6.2: The information content of salient point detectors. Measured in 1. in-
formation content and 2. the percentage of images for which a substantial decrease
(−5%) or increase (+5%) of the information content occurs. The experiment is per-
formed with both 20 or 100 salient points per image. The experiment is repeated with
a normalized descriptor which is invariant for luminance changes.

of the zeroth and first order part, I (v) = I (f)+I (fx)+I (fy). The information content
of the parts is computed from normalized histograms with

I (f) = −
∑

i

pi log (pi) (6.23)

where pi are the probabilities of the bins of the histogram of f .
The results for 20 and 100 salient points per image are shown in Table 6.2. Next to

the absolute information content we have also computed the relative information gain
with respect to the information content of the color gradient based Harris detector.
For this purpose the information content on a single image is defined as

I = −
n
∑

j=1

log (p (vj)) (6.24)

where j = 1, 2, ...n and n is the number of salient points in the image. Here p (vj)
is computed from the global histograms, which allows comparison of the results per
image. The information content change is considered substantially for a 5 percent
increase or decrease.

The highest information content is obtained with f õ
x , which is the color saliency

boosted version of the opponent derivatives. The boosting results in an increase of
7% to 13% of the information content compared to the color gradient based detector.
On the images of the Corel set this resulted in a substantial increase on 22% to 63%
of the images. The advantage of color boosting diminishes when increasing the num-
ber of salient points per image. This is caused by the limited number of color clues
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(a) (b) (c) (d)

Figure 6.4: (a) and (c) Corel input images. (b) and (d) results of Harris detector (red
dots) and the Harris detector with color boosting (yellow dots). The red dots mainly
coincide with black and white events, while the yellow dots are focussed on colorful
points (see also color plate C.19).

in many of the images, which is especially visible for the results of the photometric
quasi-invariants, S̃c

x, Õc
x, or Hc

x. These detectors discard all intensity information,
which in the case of 100 salient points per image results in many images with a sub-
stantial decrease in information content. Finally, it is noteworthy to see how small
the difference is between luminance and RGB-based Harris detection. Since the in-
tensity direction also dominates the RGB derivatives, using RGB-gradient instead of
luminance-based Harris detection only results in a substantial increase in information
content in 1% of the images.

It might be desirable for the descriptor to be invariant for scene incidental events
like shading and shadows [63]. In these cases the information content of the normalized
descriptor, which is invariant to luminance changes, better reflects the information
content of the salient point detector

v =

(

R

|f | ,
G

|f | ,
B

|f | ,
Rx

|fx|
,
Gx

|fx|
,
Bx

|fx|
,
Ry

|fy|
,
Gy

|fy|
,
By

|fy|

)

. (6.25)

The results of the normalized descriptor are given in the right half of Table 6.2. The
increase in information content of the quasi-invariants and the color boosted detectors
stands out even more, with substantial gains in information content of up to 90%.
Here the quasi-invariants based detectors outperform the other detectors.

In Fig. 6.4 results of the RGB-gradient based and color boosted Harris detector are
depicted. From a color information point of view, the RGB-gradient based method
does a poor job. Most of the salient points have a black and white local neighborhood,
with a low color saliency. The salient points after color boosting focus on more
distinctive points. Similar results are depicted in Fig. 6.3b,d, where the results are
shown computed with the Λ-parameters belonging to the data sets of these images.

6.6.3 Repeatability: signal-to-noise

Repeatability measures the stability with respect to varying viewing conditions. As
indicated in section 6.5.1 color saliency boosting reduces the signal-to-noise ratio.
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Repeatability with respect to geometrical changes, scaling, and affine transformations
are considered a property of the detector and will not be considered here.

The loss of repeatability caused by color saliency boosting is examined by adding
uniform, uncorrelated Gaussian noise of σ = 10. This yields a good indication of
loss in signal-to-noise, which in its turn will influence results of repeatability under
other variations, such as zooming, illumination changes, and geometrical changes.
Repeatability is measured by comparing the Harris points detected in the noisy image
to the points in the noise-free images. The results in Fig. 6.5a correspond to the
expectation made by Eq. 6.20, namely the larger the difference between Λ11 and Λ33,
the poorer the repeatability.

In Fig. 6.5b the information content and repeatability as a function of the color
boosting, determined by the α-parameter, is given (see Eq.6.21). The experiment
is performed by applying color boosting to the opponent color space. The results
show that information content increases at the cost of stability. Depending on the
application a choice should be made about the amount of color saliency boosting.

6.6.4 Repeatability: photometric variation

Photometric robustness increases with color boosting, as discussed in Section 6.5.1.
In Fig. 6.6 the dependance of repeatability is tested on two image sequences with
changing illumination conditions [53]. The experiment was performed by applying
color boosting to the spherical color space, since changes due to shadow-shading will
be along the photometric variant direction of the spherical system. For these ex-
periments two intertwining phenomena can be observed: the improved photometric
invariance and the deterioration of signal-to-noise ratio with increasing α. For the
nuts-sequence, with very prominent shadows and shading, the photometric invariance
is dominant, while for the fruit-basket the gained photometric invariance only im-
proves performance slightly for medium α values. For total color saliency boosting,
α = 1 the loss of repeatability, due to loss of signal-to-noise, is substantial.

(a) (b)

Figure 6.5: (a) The percentage of Harris points which remain detected after adding
Gaussian uncorrelated noise. (b) The information content (blue line) and the repeata-
bility (red line) as a function of the amount of color saliency boosting.
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a

(a) (b) (c)

Figure 6.6: (a),(b) Two frames from two sequences with changing illumination con-
ditions. (c) Repeatability as a function of the amount of color saliency boosting for
the two sequences. Dotted line for the nuts-sequence and the continuous line for the
fruit-basket sequence (see also color plate C.20).

6.6.5 Illustrations Generality

Color saliency boosting can be applied on all functions which can be written as a
function of the local derivatives. Here we apply it to three different feature detectors.
First we apply saliency boosting to the focus point detector which was originally
proposed by Reisfeld et al. [60] and recently extended to color by Heidemann [29].
The detector focuses on the center of locally symmetric structures. Fig. 6.7b shows
the saliency map as proposed in [29]. In Fig. 6.7c the result after saliency boosting
is depicted. Although focus point detection is already an extension from luminance
to color, black-and-white transition still dominate the result. Only after boosting
the color saliency, the less interesting black-and-white structures in the image are
ignored and most of the red Chinese signs are found. Similar difference in performance
is obtained by applying color boosting to the linear symmetry detector proposed
by Bigün [6]. This detector focuses on corner and junction like structures. The
RGB gradient based method focuses mainly on black-and-white events while the
more salient signboards are found only after color saliency boosting.

As a final illustration we illustrate that color saliency boosting can easily be ap-
plied to gradient based methods. In third row of Fig. 6.7 color boosting is applied
to a gradient based segmentation algorithm proposed by Jermyn and Ishikawa [36].
The algorithm finds globally optimal regions and boundaries. In Fig. 6.7b and c re-
spectively the RGB gradient and the color boosted gradient are depicted. While the
RGB-gradient based segmentation is distracted by the many black-and-white events
in the background, the color boosted segmentation finds the salient traffic signs.

6.7 Conclusions

In this chapter color distinctiveness is explicitly incorporated in the design of salient
point detectors. The method, called color saliency boosting, can be incorporated into
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(d) (h) (l)

(c) (g) (k)

(b) (f) (j)

(a) (e) (i)

Figure 6.7: Respectively, input image, RGB-gradient based saliency map, color boosted
saliency map and the results with red dots (lines) for gradient-based method and yellow
dots (lines) for salient points after color saliency boosting. Results (a),(b),(c),(d) for
the focus points, (e),(f),(g),(h) for the symmetry points and (i),(j),(k),(l) for the global
optimal regions and boundary method (see also color plate C.21).

existing detectors which are mostly focused on shape distinctiveness. Saliency boost-
ing is based upon an analysis of the statistics of color image derivatives. Isosalient
derivatives form ellipsoids in the color derivative histograms. This fact is exploited
to adapt derivatives in such a way that equal saliency implies equal impact on the
saliency map. Experiments show that color saliency boosting substantially increases
the information content of the detected points. A substantial information content
increase is obtained on up to 20 − 60% of the Corel images. Further, the generality
of the method is illustrated by applying color boosting to various point detectors.



Chapter 7

Summary and Conclusions

7.1 Summary

In this thesis, we explore methods to exploit the extra information available in color
images as opposed to grey-value images. We indicate two main advantages of using
color data over luminance data. Firstly, color data contains a richer photometric
description of the local structure from which various causes for variations in the image
can be distinguished. This richer description allows for example to separate highly
informative object edges from less informative shadow edges. A second advantage
of color over luminance is that color can be used to improve the distinctiveness of
salient point detectors. An analysis of the distribution of colors in the world allows
to distinguish between low frequent and therefore highly informative colors, and high
frequent and therefore less informative colors. The observation of color distinctiveness
can be incorporated in existing salient point detectors. The two above mentioned
advantages let to the following main objectives for this thesis:

1. From Luminance to Color: Extend luminance-based algorithms to color in
a mathematically sound way. One consequence is that color image enhancement
methods do not introduce new chromaticities. A second implication is that for
differential-based algorithms the derivatives of the separate channels should be
combined without loss of derivative information.

2. Photometric Information: Compute photometric invariant differential in-
formation in a robust way. We focus on the class of applications for which
no a-priori knowledge of the noise characteristics of the acquisition system is
available.

3. Color Distinctiveness: Improve the distinctiveness of salient point detection
algorithms by explicitly incorporating color statistics into the detector design.

The results obtained in the thesis are discussed per chapter in the following para-
graphs:

81
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Chapter 2: Least Squares and Robust Estimation of Local Image Struc-
ture. In this chapter we propose the Gaussian facet model, as a generalization of
the classic Haralick facet model, which constructs a polynomial approximation of the
unsmoothed image. The measured differential structure therefore is closer to the
‘real’ structure than the differential structure measured using Gaussian derivatives.
At the points in an image where the differential structure changes abruptly (because
of discontinuities in the imaging conditions, e.g. a material change, or a depth dis-
continuity) both the Gaussian derivatives and the Gaussian facet model diffuse the
information from both sides of the discontinuity (smoothing across the edge). Robust
estimators that are classically meant to deal with statistical outliers can also be used
to deal with these ‘mixed model distributions’. In this paper we introduce the robust
estimators of local image structure. We start with the Gaussian facet model where we
replace the quadratic error norm with a robust (Gaussian) error norm, which leads to
a robust Gaussian facet model. Examples are given for luminance and color images,
and for both zero and higher order differential structure.
Chapter 3: Edge and Corner Detection by Photometric Quasi-Invariants.
We propose a new class of derivatives which we refer to as quasi-invariants. These
quasi-invariants are derivatives which share with full photometric invariants the prop-
erty that they are insensitive for certain photometric edges, such as shadows or specu-
lar edges, but without the inherent instabilities of full photometric invariants. Exper-
iments show that the quasi-invariant derivatives are less sensitive to noise and intro-
duce less edge displacement than full invariant derivatives. Moreover, quasi-invariants
significantly outperform the full invariant derivatives in terms of discriminative power.
Chapter 4: Curvature Estimation in Oriented Patterns Using Curvilinear
Models. Curved oriented patterns are dominated by high frequencies and exhibit
zero gradients on ridges and valleys. Existing curvature estimators fail here. The
characterization of curved oriented patterns based on translation invariance lacks an
estimation of local curvature and yields a biased curvature-dependent confidence mea-
sure. In chapter 4, we use parameterized curvilinear models to measure the amount
of local gradient energy along the model gradient as a function of model curvature.
Minimizing the residual energy yields a closed-form solution for the local curvature
estimate and the corresponding confidence measure. We show that simple curvilinear
models are applicable in the analysis of a wide variety of curved oriented patterns.
Chapter 5: Robust Photometric Invariant Features from the Color Tensor.
In this chapter we focus on the structure tensor, or color tensor, which adequately
handles the vector nature of color images. Further, we combine the features based on
the color tensor with photometric invariant derivatives to arrive at photometric in-
variant features. We circumvent the drawback of unstable photometric invariants by
deriving an uncertainty measure to accompany the photometric invariant derivatives.
The uncertainty is incorporated in the color tensor, hereby allowing the computa-
tion of robust photometric invariant features. The combination of the photometric
invariance theory and tensor-based features allows for detection of a variety of fea-
tures such as photometric invariant edges, corners, optical flow and curvature. The
proposed features are tested for noise characteristics and robustness to photometric
changes. Experiments show that the proposed features are robust to scene incidental
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events and that the proposed uncertainty measure improves the applicability of full
invariants.
Chapter 6: Boosting Color Saliency in Image Feature Detection. In this
chapter color distinctiveness is explicitly incorporated into the design of saliency de-
tection. The algorithm, called color saliency boosting, is based on an analysis of the
statistics of color image derivatives. Isosalient color derivatives are shown to form
ellipsoidal surfaces. Based on this remarkable statistical finding, isosalient deriva-
tives are transformed by color boosting to have equal impact on the saliency. Color
saliency boosting is designed as a generic method easily adaptable to existing, mostly
shape distinctiveness focussed, feature detectors. Results show that substantial im-
provements in information content are acquired by targeting color salient features.
Further, the generality of the method is illustrated by applying color boosting to
multiple existing saliency methods.

7.2 Conclusions

In this thesis we have proposed theory and techniques to augment the usefulness of
color for computer vision. The first objective of the thesis is to extend luminance-
based algorithms to color in a mathematical sound way. For color image filtering
this implies that the correlation between the channels has to be taken into account
to prevent the introduction of undesired new chromaticities. To this end, a robust
estimator of local image structure is proposed. The estimation is based on the iterative
use of a spatial-tonal Gaussian filter which is based on both the spatial distance and
the tonal distance between pixel values. Application of the robust estimator results in
efficient noise reduction with only little loss of contrast, and without the introduction
of new chromaticities. For differential-based algorithms the extension from luminance
to color poses a different problem. The problem is how to combine the differential
information of the separate channels. We observe that tensor mathematics solves this
problem. Therefore we give an overview of tensor-based features and we show how to
extend them to color.

The second objective of the thesis is to design robust photometric invariant dif-
ferential operators. We distinguish between feature detection, i.e. the localization of
a feature, and feature extraction, i.e. the extraction of a descriptor of a local neigh-
borhood at a certain location in the image. Firstly, for feature detection, a set of
derivative filters is proposed which are coined quasi-invariants. These filters outper-
form existing full photometric invariant derivatives in terms of discriminative power
and localization. Secondly, for feature extraction, we derive an uncertainty measure
to accompany full-invariant derivatives. Color features which incorporate this uncer-
tainty measure are shown to outperform existing full invariant features. The proposed
color features include: edges, corners, symmetry points, circle detectors, and optical
flow.

The third objective of the thesis is to improve the distinctiveness of salient point
detection algorithms by explicitly incorporating color statistics into the detector de-
sign. From information theory it is known that rare events, i.e. events with a low
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frequency of occurrence, have high information content. Salient point detection aims
at detecting salient, and hence highly informative points in the image. Most existing
salient point detectors are luminance-based and are computed from the differential
structure of the image. An analysis of the statistics of color derivatives for a large data
set of real world pictures reveals a remarkable phenomenon; derivatives with equal
frequency, and hence equal information content, form ellipsoid surfaces in derivative
space. We exploit this phenomenon by adjusting the saliency functions in such a
way that points with equal information content have equal influence on the saliency
function. This process is called color saliency boosting, and it has been proven to
substantially increase the information content of the detected salient points.
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Samenvatting

Vandaag de dag maakt het merendeel van de beeldberwerkings operaties slechts ge-
bruik van de luminantie (de grijswaarden) en wordt de kleureninformatie onbenut
gelaten, ondanks het feit dat een aanzienlijk deel van beelddata tegenwoordig in
kleurenformaat is. Dit proefschrift behandelt technieken en theorieën om de mo-
gelijkheden, die kleurenbeeldberwerking en in het bijzonder kleurenkenmerkdetectie
bieden, verder te benutten.

Voor het gebruik van kleurenbeelden is het belangrijk om na te gaan hoe bestaande
operaties, ontwikkeld voor luminantiebeelden, op een wiskundig correcte wijze naar
kleurenbeelden kunnen worden uitgebreid. Voor beeldverfraaiing betekent dit dat de
correlatie tussen de kanalen (rode, groene en blauwe kanaal) zodanig moet worden
gerespecteerd dat de operaties geen kleuren introduceren die niet aanwezig zijn in
het originele beeld. In dit proefschrift wordt dit probleem omgeschreven naar een
robuust schattingsprobleem, en wordt een efficiënte methode voorgesteld om lokale
beeldstructuur te schatten. Beeldverfraaiing gebaseerd op deze methode laat een
goede ruisonderdrukking zien, gecombineerd met behoud van contrast en zonder de
introductie van ongewenste nieuwe kleuren.

Voor operaties die gebaseerd zijn op de differentiële structuur van een beeld
veroorzaakt de uitbreiding naar kleuren een ander wiskundig probleem: hoe moet
de differentiële structuur van de verschillende kanalen worden gecombineerd ? Er
wordt aangetoond dat tensor wiskunde dit probleem oplost, waarna een overzicht
wordt gegeven van bestaande tensor gebaseerde operaties, samen met de uitbreiding
voor kleurenbeelden.

Verder concentreert dit proefschrift zich op twee voordelen van kleurenbeeldbew-
erking ten opzichte van traditionele luminantie gebaseerde beeldbewerking.

Ten eerste, kleurenbeelden bevatten een rijkere fotometrische beschrijving van de
beeldinhoud. Hierdoor wordt het mogelijk om fotometrisch invariante kenmerkdetec-
tie in beelden te doen. Beeld operaties kunnen zo worden ontworpen dat belangrijke
overgangen tussen objecten wel worden gedetecteerd terwijl relatief onbelangrijke
schaduw randen worden genegeerd. Hoewel fotometrische invariantie algemeen ge-
bruikt wordt, is er slechts weinig onderzoek gedaan naar uitbreiding van fotometrische
invariantie theorie naar de differentiële structuur van beelden. In dit proefschrift
stellen wij een groep afgeleidde filters voor, genaamd de quasi-invarianten, die het
mogelijk maakt om de fotometrische invariante differentiaal structuur van beelden
op een robuuste manier te meten. Experimenten tonen aan dat de quasi-invarianten
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betere resultaten behalen dan de bestaande methodes wat betreft discriminerend ver-
mogen en lokalisatie van de beeldkenmerken.

Een tweede voordeel van kleurenbeeldbewerking is dat kleur een belangrijke aan-
wijzing is voor saillante (in het oog springende) beeldpunten. Bestaande saillante
beeldpuntoperaties zijn gebaseerd op de differentiële structuur van beelden, en maken
geen gebruik van kleuren informatie. De saillantie van een beeldpunt wordt onder
andere bepaald door zijn zeldzaamheid, omdat zeldzame beeldpunten meer infor-
matie bevatten dan veel voorkomende beeldpunten. In dit proefschrift analyseren we
de kansverdeling van kleurenafgeleiden voor een grote dataset van 40.000 beelden,
en komen tot de observatie dat deze verdeling goed benaderd kan worden door een
ellipsöıde. Deze opmerkelijke observatie wordt gebruikt om saillante beeldpuntdetec-
tie te optimaliseren. Experimenten laten zien dat de hiervoor aangepaste methodes
beeldpunten detecteren met hogere informatie dichtheid.
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Color Plates

(a) (b) (c) (d) (e)

Figure C.1: Chapter 1: (a) Example image and (b) linear smoothed version of example
image. (c) Red channel, (d) green channel and (e) blue channel of example image.

(a) (b) (c)

Figure C.2: Chapter 1: (a) Example image, (b) human scene segmentation and (c)
standard computer edge detection.
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(a) (b)

Figure C.3: Chapter 1: (a) Example image, and (b) results of a standard salient point
detector.

Figure C.4: Chapter 2: Robust Estimation of Local Structure in Color Images. On
the first row from left to right: the ‘Lena’ image with some noise added to it, the
zero-order facet model based robust estimator of the values and the robust estimator
based on a first order based facet model. On the second row we show a detail from the
image above.
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(a) (b) (c) (d) (e) (f)

Figure C.5: Chapter 3: (a) Red-blue edge, with a decreasing intensity of the blue patch
going in the upward direction. Response of (b) normalized RGB derivative, and (c)
shadow-shading quasi-invariant (Sc

x). (d) Red-blue edge, with decreasing saturation
going in the upward direction. Response of (e) hue derivative (hx), and (f) specular-
shadow-shading quasi-invariant (Hc

x).

(a)

(b)

(c)

(d)

Figure C.6: Chapter 3: (a) Input image with superimposed two dotted lines which
are plotted in the images (c) and (d). (b) Edge classification result, with white object
edges, black shadow edges and light grey specular edges. (c),(d) The derivative strength
along lines indicated in (a).
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(a) (b) (c) (d)

Figure C.7: Chapter 3: (a) Input image and corner detector results based on (b)
RGB gradient (fx), (c) shadow-shading quasi-invariant (Sc

x), and (d) shadow-shading-
specular quasi-invariant (Hc

x).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure C.8: Chapter 3: (a), (e) Input images. Corner detection based on (b)
RGB gradient (fx), (c) normalized RGB, (d) shadow-shading quasi-invariant (Sc

x),
(f) RGB gradient (fx), (g) hue full invariant (hx), and (h) shadow-shading quasi-
invariant (Hc

x).



99

H

G

R

B

R

G

B

O2

O3

O1

i
ĉ

(a) (b)

Figure C.9: Chapter 5: (a) The subspace of measured light in the Hilbert space of
possible spectra. (b) The RGB coordinate system and an alternative orthonormal
color coordinate system which spans the same subspace.

(a) (b) (c) (d)

Figure C.10: Chapter 5: (a) test image (b) hue derivative (c) saturation (d) quasi-
invariant.

(a) (b) (c)

Figure C.11: Chapter 5: (a) An example from Soil-47 image. (b) shadow-shading
distortion with the shadow-shading quasi-invariant Harris points superimposed (c)
specular distortion and the shadow-shading-specular Harris points superimposed.



100

0

0.05

0.1

0.15

0.2

0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

achromaticity

intensity

m
e
a
n

achromaticity

intensity

re
l.
 s

td
. 
d
e
v.

m
e
a
n

re
l.
 s

td
. 
d
e
v.

(a) (b) (c)

(d) (e) (f)

Figure C.12: Chapter 5: (a),(d) frame from test sequence with constant optical flow of
one pixel per frame. (b),(c) mean and relative standard deviation mean of the optical
flow based on RGB (black line), shadow-shading invariant (blue line) and robust
shadow-shading invariant (red line). (e),(f) mean and relative standard deviation of
the optical flow based on RGB (black line), shadow-shading-specular invariant (blue
line) and robust shadow-shading-specular invariant (red line).

(a) (b) (c) (d)

Figure C.13: Chapter 5: (a) frame 1 of object scene with filter size superimposed on
it. (b) RGB gradient optical flow (c) shadow-shading invariant optical flow and (d)
robust shadow-shading invariant optical flow.
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(a) (b) (c) (d) (e)

Figure C.14: Chapter 5: (a) input image with Canny edge detection based on suc-
cessively (b) luminance derivative (c) RGB derivatives (d) the shadow-shading quasi-
invariant (e) the shadow-shading-specular quasi-invariant.

(a) (b) (c)

Figure C.15: Chapter 5: (a) detected circles based on luminance (b) detected circles
based on shadow-shading-specular quasi-invariant (c) detected circles based on shadow-
shading-specular quasi-invariant.

(a) (b) (c)

Figure C.16: Chapter 5: (a) input image (b) the circularity coefficient C (c) the
detected circles.
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(a) (b) (c)

Figure C.17: Chapter 6: The histograms of the distribution of the transformed deriva-
tives of the Corel image database in respectively the (a) RGB coordinates, (b) the
opponent coordinates and (c) the spherical coordinates. The three planes correspond
with the isosalient surfaces which contain (from dark to light) respectively 90%, 99%,
99.9%t of the total number of pixels.

(c) (d)

(a) (b)

Figure C.18: Chapter 6: (a) Example Soil data set and (c) frame from table-tennis
sequence. (b) and (d) results of Harris detector (red dots) and the Harris detector
with color boosting (yellow dots). The red dots mainly coincide with black and white
events, while the yellow dots are focussed on colorful points.
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(a) (b) (c) (d)

Figure C.19: Chapter 6: (a) and (c) Corel input images. (b) and (d) results of Harris
detector (red dots) and the Harris detector with color boosting (yellow dots). The red
dots mainly coincide with black and white events, while the yellow dots are focussed
on colorful points.

a

(a) (b) (c)

Figure C.20: Chapter 6: (a),(b) Two frames from two sequences with changing illu-
mination conditions. (c) Repeatability as a function of the amount of color saliency
boosting for the two sequences. Dotted line for the nuts-sequence and the continuous
line for the fruit-basket sequence.
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(d) (h) (l)

(c) (g) (k)

(b) (f) (j)

(a) (e) (i)

Figure C.21: Chapter 6: Respectively, the input image, RGB-gradient based saliency
map, the color boosted saliency map and the results with red dots (lines) for the
gradient-based method and yellow dots (lines) for the salient points after color saliency
boosting. (a),(b),(c),(d) Results for the focus points, (e),(f),(g),(h) for the symmetry
points and (i),(j),(k),(l) for the global optimal regions and boundary method.


