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Abstract
The gradient-square tensor describes the orientation
dependence of the squared directional derivative in
images. The ratio of eigenvalues is a measure of local
anisotropy. For an area showing shift invariance along
some orientation (think of a piece of straight rail track)
one of the tensor eigenvalues is zero. In practical
situations (think of a piece of curved rail track) rotation
invariance (perhaps around a remote center) occurs more
often than shift invariance. Then curvature contributes to
the smallest eigenvalue. In order to avoid this we deform a
local area in such a way that the rotational symmetry
becomes a translational one. Next the gradient square
tensor, defined on the transformed area, is expressed in
derivatives of the original area. A curvature corrected
anisotropy measure is defined. The correction turns out to
be simple and straightforward. An average-curvature
estimate for the area results as a valuable byproduct.

1. Introduction

Local structures in 2D and 3D images can be
directionally smooth i.e. approximately translation
invariant. One way to establish this is the analysis of the
average gradient-square tensor (Kass and Witkin, 1987;
Haglund, 1992). In its traditional form the tensor describes
the quality of translation invariance. There may be two
reasons for a bad quality. One is a genuine lack of
smoothness, the other is a lack of straightness e.g. if the
structure shows rotation invariance. The method proposed
here eliminates the curvature contribution and handles
local rotation invariance on equal footing to local
translation invariance.

In section 2 the traditional approach is discussed, in
section 3 a non-linear local coordinate transformation is
introduced which straightens curved structures, in section 4
the traditional approach is applied to a tentatively
straightened structure, the transformation is optimized to
maximize translation invariance in the transformed space.

Section 5 deals with the actual implementation and section
6 gives some experimental results.

2. The average gradient-square tensor in
Cartesian coordinates

Consider a point (x,y) in an image f(x,y). The
component of the gradient (fx,fy) along a direction φ is
(derivative notation by indexes)
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where G’ is the gradient square tensor

′ = =G f f i j x yij i j , , ,   , ′ = +g f fx y
2 2 2

and ′ = ′ = ′γ arcsin arccosf g f gy x  is the gradient

direction. The eigenvalues of G’ areλ1
2= ′g  and λ 2 0=

corresponding to gradient square along the high gradient
direction and the low gradient direction respectively.

Now consider a local area { x+ξ,y+η}  around (x,y). Let
U{ .}  indicate some weighted averaging over this area.
Then we have the average squared gradient component
along direction φ
U C x y G

U f f

U f f U f f

g d

T

x y

x y x y

{ ( , , )} (cos ,sin ) (cos ,sin )

{ }

{ } cos { } sin

cos ( )

2

1
2

2 2

1
2

2 2 1
2

1
2

2 1
2

2

2 2 2

2

φ ξ η φ φ φ φ

φ φ

φ γ

+ + = • •

= +

+ − +

= + −

(3)

where G is the average gradient square tensor

G U f f i j x yij i j= ={ } , , ,   

d U f f U f fx y x y
4 2 2 2 2 2= − +{ } { }   
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and 2γ is twice the average gradient orientation γ. For later
use we introduce local coordinates v,w along average
gradient (high gradient) and average contour (low gradient)
orientation

v = +ξ γ η γcos sin        w = − +ξ γ η γsin cos (4)

As γ is only defined modulo π we choose it so that the
positive v-axis is roughly along the gradient directions in
the area (this choice will prove irrelevant for the end
result). The eigenvalues of G are
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corresponding to average gradient-square along the high
gradient orientation (eigenvector along v-axis) and the low
gradient orientation (eigenvector along w-axis)
respectively. For translation invariant structures (with
straight parallel isophotes) we still have one zero
eigenvalue. For a y-translation invariant structure,  fy = 0,

λ1=Gxx and λ2=Gyy=Gxy=0. For an area without preferred

direction (noise) we have

d U f f U f fx y x y
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As a measure of anisotropy, or quality of translation
invariance, we use
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Figure 1: The transform to parabolic coordinates pw’
straightens circular line pieces.

3. Parabolic coordinates

We already introduced local coordinates v,w along
average gradient (high gradient) and average contour (low
gradient) orientation, now we shall amend these to

accommodate curved structures (with approximately
circular concentric isophotes). A circle with radius R–p,
with center M on the v-axis, and passing through the point
v=p, w=0 within the area is given by

v R w R p− + = −2 2 2 . If R is large compared to the

area size, the circle can be approximated by the parabola
v w p− =1

2
2κ , κ=1/R. Thus circles around M in vw-space

are transformed into straight lines in pw'-space by the
transformation p v w w w= − ′ =1

2
2κ ,    . Consequently

rotation invariance around M in vw-space is transformed
into translation invariance along w in pw'-space. We
propose to use the quality of translation invariance in pw'-
space as quality of rotation invariance in vw- and xy-space.
Usually the radius R=1/κ  of (approximate) rotation
symmetry is not known for any given area. Our method fits
κ to the data.

4. The average gradient-square tensor in
parabolic coordinates (pw’-space)

Applying the traditional average gradient-square tensor
method to pw'-space for arbitrary κ  to a rotationally
symmetric area with center on the v-axis but not
necessarily at v=1/κ we get the tensor
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with the abbreviations

Q U w fv≡ −κ κ 0
2 2 2

κ 0
2 2≡ − U wf f U w fv w v

K U wf f U w fv w v≡ 2 2 2

Here we have used that for symmetry reasons

U f f U wf U f fp w v v w′ = + =κ 2 0 (8)

and we have inserted the derivatives
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corresponding to gradient square along the high gradient
direction and the low gradient direction respectively. We
see that the low-gradient-square eigenvalue λ2 can be
minimized by choosing κ=κ0. Therefore we interprete κ0
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as the actual curvature. Choosing a different κ leads to a
too high gradient-square estimate in the low gradient
direction. This is what happens in the traditional analysis,
 where κ=0 and λ 2

2= U fw . Fitting κ=κ0 the tensor gets

the “curvature corrected”  eigenvalues
 λ1

2= U fv  and λ 2 = −U f Kw
2

which leads to the new anisotropy measure
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Note that this measure only depends on the orientation and
not on the direction of the v-axis. The expression for κ0
depends on the direction and not only on the orientation of
the v-axis, hence as a byproduct we have the estimator of
absolute curvature
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Compared to the traditional anisotropy A=d2/g2 we now
have
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Expressions for U w fv{ }2 2  and U wf fv w
2{ }  in terms of ξ,

η, fx and fy are given in Appendix A.

5. Implementation

Using the expansion of U w fv{ }2 2  and U wf fv w
2{ }  in

terms of ξ, η, fx and fy from Appendix A we implemented
the average gradient square tensor in parabolic coordinates.
The derivatives fx and fy  are implemented as regularized
derivative filters
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regularization function of scale σg
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The terms U f fa b c dξ ξ  with a,b,c,d = x,y (from

appendix A) can be implemented in the Fourier domain. At
every position (x,y) we compute a weighted inner product
between ξ ξa b and f fc d . This is equivalent to a
convolution of f fc d  with a filter U{ ξ ξa b} . These
convolution filters can easily be implemented in the
Fourier domain
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with � { f fx
r

y
s}  the Fourier transform of f fx

r
y
s. For the

weighting function U{ }  we choose a Gaussian window of
scale σt. The Fourier transform of the convolution filter u()

is
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Note that the average gradient square tensor first computes
the gradient at a (fine) scale σg. The tensor elements are

then averaged over a larger scale σt.

a b

c
Figure 2: a) f1(x,y) with a = 0.1, b = 1 and ϕ = 0.5. The
isophote through the center of the image – coordinate (0,0)
– is indicated. b) f2(x,y). c) f3(x,y) with a = 2 and n = N(0,0),
i.e., noise free. The results inside the square will be
displayed in subsequent figures.

6. Experiments

The experiments serve various goals. First to test the
theory and its implementation. For this goal we have
constructed several test images (c.f. Figure 2). Image
f1(x,y) is a slightly tilted valley with parabolic isophotes

and symmetry axis along the ϕ-direction
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f x y f x y ax by1 1
2, ’ , ’ ’ ’= ′ = + (18)

with x x y’ cos sin= +ϕ ϕ  and y x y’ sin cos= − +ϕ ϕ . To
test the accuracy of the calculations we compute the
absolute curvature at position (x,y)=(0,0) in image f1(x,y)

for random orientations ϕ for values of a and b with a<<b.
Test image f2(x,y) is a cone

f x y x y2
2 2, = + (19)

and is used to test the applicability of the method for
circular symmetric patters of a continuous varying
curvature. We can measure the difference in anisotropy
with and without curvature correction. We can test the
accuracy of the curvature estimation with increasing
curvature inside a constant area size.
Test image f3(x,y) is a bull’s eye of concentric rings

f x y x y a n n N3
2 2 20, cos ,= + + = σ (20)

and allows us to test the performance of the method in data
distorted by noise. Traditional (non-averaged) curvature
estimation (van Vliet and Verbeek, 1993) using eq. (21)
works well on sloped regions (edges), but fails on ridges
and in valley’s, especially in the presence of noise.
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Finally, the practical applicability of the extended gradient
square tensor is demonstrated on fingerprint images. An
example is displayed below. The highly curved region is an
important clue and needs to be extracted from noisy data.

7. Results

The results on test image f1 show that the method is

correct. The estimated curvature at position (0,0) is equal
to the curvature of the test image at position (0,0), i.e., 2a.
The relative difference of 10–7 is caused by round-off
errors in the floating point notation. We have tested the
method using σg = 1.0 and σt = 2.0. The test image has a

fixed b (b = 1), a random orientation of the symmetry axis
ϕ, and values for a in the range from 0.01 to 0.1.

The results obtained on the cone (test image f2) are

shown in Figure 3. This figure shows that for small
isophote radii the smoothness measure (anisotropy)
improves significantly when using parabolic coordinates
instead of Cartesian coordinates.

The improvements in measuring the local anisotropy
and the average curvature are displayed in Figure 4. It is
clear that the traditional curvature estimation method
works on the edges, but fails on the ridges and in the
valleys of the low-frequency images. The traditional
curvature estimation method fails completely when applied

to high-frequency line bundles which are completely
suppressed by the Gaussian regularization. A smaller
regularization kernel yields a result dominated by noise
(not shown in the figures). The average curvature
estimation performs excellent on both low-frequency and
high-frequency line bundles. The improvement in local
anisotropy is directly related to the performance of the
average curvature.

Figure 5 shows the average curvature of a fingerprint
image. The two peaks in the curvature image correspond to
important minutia for fingerprint recognition (Maio et al.,
1997; Jain et al., 1997).

0.0
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5 15 25 35 45 55

radius of level curve

improvement in
anisotropy
parabolic
coordinates
cartesian
coordinates
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(theory)

Figure 3: Anisotropy measures obtained on a cone (test
image f2) as a function of curve radius (distance to the
center of the cone). The method uses scales σg = 1.0 and
σt = 5.0. The anisotropy of the orientation tensor in
Cartesian and parabolic coordinates are measured. Their
difference is called improvement in anisotropy. The
improvement is largest at R=9. The anisotropy in polar
coordinates is per definition equal to one.

8. Conclusions

The orientation tensor according to Haglung yields the
local orientation and the local anisotropy in Cartesian
coordinates. We extended the orientation tensor to local
parabolic coordinates with the symmetry axis parallel to
the local orientation. The curvature of the parabolic
coordinate system is adaptive such that it maximizes the
anisotropy measure.
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a b 

c d 
Figure 4: Test  results obtained on noisy curved line bundles of different spatial frequency and fixed SNR. (signal
amplitude 1, noise N(0,0.04), SNR=10 log10(22/0.04) = 20 dB. Each image contain four parts: top-left is the input
image with the filter support superimposed (4σt diameter); bottom-left shows the improvement in local anisotropy
(difference between local anisotropy in parabolic and Cartesian coordinates) after logarithmic stretching of the
grey-scale; top-right shows the traditional curvature measured at the same scale as the tensor smoothing;
bottom-right shows the average curvature measured by the orientation tensor in parabolic coordinates.
a) low frequency image (σg = 1, σt = 5); b) low frequency image (σg = 1, σt = 10);

c) high frequency image (σg = 1, σt = 5); d) high frequency image (σg = 1, σt = 10).

a b 
Figure 5: Average curvature of a fingerprint image (4σt diameter)  (σg = 1.0. σt = 7.5).
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This eliminates the contribution of curvature to directional
non-smoothness and yields our improved anisotropy
measure. As a valuable byproduct we obtain a robust
estimator for average curvature. This curvature estimator
performs excellent on curved line bundles (of low signal-
to-noise ratio) where the traditional curvature estimator,
based on a mixture of regularized first and second
derivatives, fails.

 The method can be extended to higher dimensions. For
stacked isophote planes in 3-D, with main non-smoothness
in a single direction the correction is still feasible. For
isophote bundles in 3-D, with a single smooth direction the
method is clear but the burden of computation may be
impractical.
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11. Appendix A

Define normalized eigenvectors

nv = (xv,yv) = (cosγ, sinγ)

nw = (xw,yw) = (–sinγ , cosγ) (22)

with
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2 – fy

2}/  d2 (23)

then, writing ξ ξ ξ ηx y≡ ≡,   

v x y f f x f y

w x y f f x f y

x v y v v x v y v

x w y w w x w y w

= + = +

= + = +

ξ ξ

ξ ξ
(24)

we get the 9 terms of U w fv
2 2

U w f U x y f x f y

a b c d U f f

v x w y w x v y v

w w v v
a b c d x y

a b c d

2 2 2 2
= + +

=
=

∑

ξ ξ

ξ ξ
, , , ,

(25)
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Using the definitions for v, w, fv, and fw we get
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